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Nanotube heat conductors under tensile strain: Reducing the three-phonon
scattering strength of acoustic phonons
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Acoustic phonons play a special role in lattice heat transport, and confining these low-energy modes in
low-dimensional materials may enable nontrivial transport phenomena. By applying lowest-order anharmonic
perturbation theory to an atomistic model of a carbon nanotube, we investigate numerically and analytically the
spectrum of three-phonon scattering channels in which at least one phonon is of low energy. Our calculations
show that acoustic longitudinal (LA), flexural (FA), and twisting (TW) modes in nanotubes exhibit a distinct
dissipative behavior in the long-wavelength limit, |k| → 0, which manifests itself in scattering rates that scale
as �LA ∼ |k|−1/2, �FA ∼ k0, and �TW ∼ |k|1/2. These scaling relations are a consequence of the harmonic lattice
approximation and critically depend on the condition that tubes are free of mechanical strain. In this regard,
we show that small amounts of tensile lattice strain ε reduce the strength of anharmonic scattering, resulting in
strain-modulated rates that, in the long-wavelength limit, obey � ∼ εr |k|s with r � 0 and s � 1, irrespectively
of acoustic mode polarization. Under the single-mode relaxation time approximation of the linearized Peierls-
Boltzmann equation (PBE), the long-tube limit of lattice thermal conductivity in stress-free and stretched tube
configurations can be unambiguously characterized. Going beyond relaxation time approximations, analytical
results obtained in the present study may help to benchmark numerical routines which aim at deriving the thermal
conductivity of nanotubes from an exact solution of the PBE.
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I. INTRODUCTION

Two-dimensional graphene sheets and their one-dimen
sional derivatives, carbon nanotubes, exhibit an extremely
efficient lattice heat transport [1,2]. While the merits of
integrating these carbon allotropes into thermal management
applications have been convincingly demonstrated in recent
years [3–8], separating their intrinsic low-dimensional
heat transport properties from external factors remains
a challenge [9,10]. Residual strain in the carbon lattice
is commonly identified as one source of measurement
uncertainty among others in heat transport experiments
involving nanostructured carbon samples [9,10]. A thorough
understanding on theoretical grounds of the role of strain in
low-dimensional lattice heat transport is therefore crucial.

Focusing on the effects of strain in lattice heat trans-
port, phonon frequencies in three-dimensional crystals are
typically described by a positive mode-specific Grüneisen
parameter [11,12], which translates to frequency hardening
of phonons under compressive and softening under tensile
loading. Roughly speaking, an overall downward shift of fre-
quencies under a tensile load leads to a reduction of phonon
group velocities, which in turn causes a reduced rate of lattice
heat transfer. Even though other phonon properties play a
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role as well, such a qualitative trend was generally confirmed
for three-dimensional systems [13]. In contrast, one and
two-dimensional crystals allow for atomic out-of-line and out-
of-plane vibrations, respectively, whose associated phonon
frequencies instead harden under tensile strain [12,14]. In
light of these flexural modes, nonconventional strain behavior
of low-dimensional heat transport in graphene and carbon
nanotubes might be anticipated.

The linearized Peierls-Boltzmann equation (PBE) for
phonon transport has become a standard tool to tackle an-
harmonic phonon interactions and the emergence of thermal
resistivity in crystalline solids [15]. Within this formalism, de-
termining the kinematically allowed three-phonon processes
and their corresponding scattering amplitudes, as prescribed
by anharmonic perturbation theory, is a key requirement for
predicting the thermal conductivity. Bonini et al. [16] studied
graphene in the framework of the PBE, making the notable
observation that anharmonic scattering processes including
acoustic flexural modes become systematically weakened un-
der increasing tensile lattice strain. Specifically, by examining
analytically the implications of anharmonic perturbation the-
ory in the limit of low phonon energies, it was shown in
Ref. [16] that the per-phonon conductivity contributions of
weakly damped flexural modes under strain might grow with-
out bound in the limit of large crystalline domain sizes.
Although these conclusions with respect to thermal transport
in graphene were later called into question and attributed to
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an inadequacy of relaxation time approximations to the PBE
[17,18], the results in Ref. [16], nevertheless, give an unequiv-
ocal demonstration of the importance of lattice strain as far as
low-frequency phonon scattering rates are concerned.

In the case of carbon nanotubes, some analytical consid-
erations of three-phonon scattering rates were first presented
by Mingo and Broido [19]. By simplifying the exact scat-
tering formulas inherent to anharmonic perturbation theory,
they derived approximate long-wavelength scaling relations
capturing the three-phonon scattering strength of acoustic
phonons and thereby pointed out the issue of heat carrying
modes with vanishing scattering rates. Later, more refined
heat transport calculations within the PBE framework were
performed on free-standing carbon nanotubes by us [20]
and others [21–24]. With the help of numerical routines,
these studies retained the full complexity associated with
the many-body problem of interacting phonons but did not
account for the exact long-wavelength scaling relations of
acoustic phonon scattering rates which are prescribed by
lowest-order anharmonic perturbation theory. More so, to the
best of our knowledge, the effects of strain on low-frequency
three-phonon scattering rates involving flexural out-of-line
vibrations have so far not been rigorously addressed within
the PBE formalism.

To shed light on the manifestations of strain in lattice
heat transport under one-dimensional phonon confinement,
we examine here the case of carbon nanotubes in stress-
free and stretched configurations. In particular, in anticipation
of anomalous strain behavior rooted in the dynamics of
flexural acoustic phonons [16], we put our emphasis on
examining the three-phonon scattering amplitudes of nan-
otubes in the low-frequency limit. To this end, we carry
out lattice-dynamical calculations which allow us to pro-
duce some general long-wavelength scaling relations resulting
from lowest-order anharmonic perturbation theory, which are
demonstrated to depend crucially on both tensile lattice strain
as well as acoustic mode polarization. Importantly, while
previous studies on stress-free nanotubes [20–24] resorted
exclusively to reporting numerical results, here we support our
data with an exact analysis of the behavior of three-phonon
scattering rates in the low-frequency limit. As we show, earlier
continuum modeling efforts on nanotubes [25–28] can, in
part, help put numerical lattice-dynamical findings on firm
theoretical footing. In this way, at the level of the single-mode
relaxation time approximation to the PBE, unambiguous qual-
itative trends of the thermal conductivity in the long-tube limit
can be given for both unstrained and stretched tube configura-
tions.

This paper is structured as follows. In Sec. II, we give
a brief account of our lattice-dynamical model and the nu-
merical treatment of three-phonon interactions, with further
computational details deferred to Appendix A. Section III
establishes relevant links to continuum theories. Strain de-
pendent scattering rates of acoustic phonons are presented in
Sec. IV and are complemented with exact long-wavelength
scaling laws derived in Appendix B. In Sec. V, these findings
are applied to predict thermal conductivity coefficients of
pristine tubes under a relaxation time approximation to the
PBE. We finally discuss further research directions in Sec. VI
and conclude in Sec. VII.

II. LATTICE-DYNAMICAL CALCULATIONS

To model carbon nanotubes, throughout this work we
adopt a Tersoff type atomic interaction potential devised for
sp2-hybridized carbon [29]. Rather than aiming at precise
quantitative predictions accounting for tube chirality effects,
our focus lies on finding generic trends of acoustic mode
interactions in light of one-dimensional phonon confinement
and tensile lattice strain. We therefore restrict our attention to
isotropically pure nanotubes of chirality (4,4) with diameter
D ≈ 5.55 Å and translational lattice parameter a = (1 + ε)a0,
where ε � 0 denotes a variable tensile strain amplitude and
a0 ≈ 2.51 Å corresponds to the tube’s minimum-potential en-
ergy configuration in the stress-free state. Such achiral tubes
of small diameter give rise to only a moderate number of
phonon dispersion branches ω j (k), in this case j = 1, . . . , 48.
As a result, it is possible to consider the full spectrum of
three-phonon scattering processes over a relatively fine wave
number grid, spanning the one-dimensional Brillouin zone
−π/a < k � π/a, which, as we show later, is crucial to re-
solve acoustic phonon dynamics in the long-wavelength limit
|k|a � 1.

We calculate anharmonic phonon-phonon scattering
rates within lowest-order perturbation theory. For a one-
dimensional system, the total rate for a mode with polarization
j and wave number k due to three-phonon interactions is de-
rived, e.g., from the imaginary part of the phonon self-energy
[30] and expressed as

� j (k) = 1

N

∑
(k′, j′ )
(k′′, j′′ )

1

2
�−

j j′ j′′ (k, k′, k′′) + �+
j j′ j′′ (k, k′, k′′),

(1)

where N determines the grid spacing of wave numbers, �k =
2π/Na, and the �±’s describe three-phonon absorption (+)
as well as decay (−) amplitudes. Introducing the shorthand
ν = ( j, k), individual transition amplitudes at finite tempera-
ture (T > 0) are given by

�±
ν,ν ′,ν ′′ = h̄π

4 ωνων ′ων ′′

(nν ′ + 1/2 ± 1/2)nν ′′

nν

|V ±
ν,ν ′,ν ′′ |2

× δ(ων ± ων ′ − ων ′′ )�k±k′−k′′, 2πm/a, (2)

where the nν’s are the Bose-Einstein occupation numbers,
V ±

ν,ν ′,ν ′′ = Vj j′ j′′ (k,±k′,−k′′) denote the Fourier transforms of
the third order force constant tensor (see Appendix A), the
delta function enforces energy conservation, and the discrete
translational invariance of the crystal lattice implies the con-
servation of quasimomentum as signified by the Kronecker
delta �, with m = 0 and m = ±1 denoting normal and Umk-
lapp scattering processes, respectively. Given the discrete
rotational invariance of nanotubes, scattering processes are
further subject to a quasiangular momentum selection rule
[21,31], which is not explicitly stated here but encoded in
V ±

ν,ν ′,ν ′′ . Phonon triplets sampled from the same regular wave
number grid generally cannot fulfill the condition of energy
conservation and the delta function in Eq. (2) has to be
resolved numerically. Here, we apply an adaptive Gaussian
smearing approach [32] to compute phonon-phonon scattering
rates as per Eqs. (1) and (2). Tensile lattice strain ε enters
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naturally into our calculations by influencing second and third
order atomic force constants, which are the essential inputs to
predict harmonic phonon spectra and three-phonon coupling
coefficients Vj j′ j′′ .

III. CONTINUUM MODELS AND ACOUSTIC
PHONONS IN NANOTUBES

Treated as isotropic, free-standing, linear elastic continua,
both long tubes and solid rods of radius R are known
to permit three distinctive types of low-frequency waves:
twisting (TW), longitudinal (LA) and two degenerate flex-
ural bending (FA) type modes, exhibiting linear, ωTW/LA ∼
|k|, and quadratic, ωFA ∼ Rk2, axial wave dispersion in the
long-wavelength limit |k|R � 1 [33]. In the case of car-
bon nanotubes, these acoustic waves can be reproduced by
a simple continuum model of a cylindrical surface [25,26].
Specifically, by assuming that carbon nanotubes inherit the in-
plane elastic isotropy of graphene sheets [25,26], the acoustic
wave dispersion for |k| → 0 becomes

ωTW(k) = vTW|k|, vTW =
√

μ

ρm
,

ωLA(k) = vLA|k|, vLA =
√

Y

ρm
,

ωFA(k) = vLAR√
2

k2,

(3)

where the TW and LA wave velocities are determined by the
2D shear modulus μ, the 2D Young’s modulus Y , and the
area mass density of the cylinder surface ρm. More sophis-
ticated continuum models have to be employed to account
for tube chirality effects and elastic anisotropy. Considering
both chiral and achiral tubes, recently, Gupta and Kumar [28]
applied a Cosserat rod theory in order to derive analytical
expressions for the acoustic wave dispersion under external
loads. Following Ref. [28], to the lowest order in the tensile
stain amplitude ε, frequency hardening of FA modes mani-
fests itself in nanotubes as

ω2
FA(k, ε) = ω2

FA(k, 0) + T1ε k2 − T2ε k4, (4)

where ωFA(k, 0) denotes the FA mode dispersion in the stress-
free state and the Ti’s stand for some positive constants which
relate to the tube’s stretching and bending stiffness. For our
model of a (4,4) carbon nanotube, acoustic mode frequencies
obtained from lattice-dynamical calculations are plotted in
Fig. 1. From TW and LA mode frequencies in unstrained
tubes, we infer vTW = 13.57 km/s and vLA = 21.37 km/s, re-
spectively. At ε = 2.0 %, TW mode velocities are found to be
slightly increased by 0.2 %, whereas LA mode velocities be-
come smaller by 2.9 %. Most importantly, under finite tensile
strain, long-wavelength FA modes transition from a quadratic
to a linear wave dispersion as is faithfully described by Eq. (4).

Continuum models might be further invoked to provide
insight into acoustic phonon-phonon interaction processes.
Within lowest-order perturbation theory, for a given acoustic
phonon ( j, k) of low energy and long wavelength, ω j (|k| →
0) = 0, two types of interacting phonon triplets are permit-
ted by the law of energy conservation: (i) triplets of three

FIG. 1. Log-log plot of the acoustic phonon dispersion in (4,4)
carbon nanotubes under varying tensile strain ε. Empty plot markers
correspond to lattice-dynamical calculations that take strain depen-
dent second order force constants as input. Solid lines are obtained
by fitting the continuum predictions as per Eqs. (3) and (4) to
phonon data in the region k � 0.1 π/a. Here, ωTW = 27.04 k, ωLA =
42.56 k, and ω2

FA = (10.61 − 73.70ε) × 103 k4 + 1.75 × 103 ε k2 for
twisting (TW), longitudinal (LA), and flexural (FA) modes, respec-
tively, with ω j in units of THz and k in units of π/a, where a denotes
the lattice constant at a given strain amplitude.

acoustic phonons, whose energies fall below the lowest op-
tical phonon energy, ω j ∼ ω j′ ∼ ω j′′ � ωOPT, or (ii) triplets
of one acoustic and two optical modes, where ω j � ωOPT′ ∼
ωOPT′′ . A continuum approach lends itself to study scattering
channels involving triplets of type (i). Treating stress-free
carbon nanotubes as isotropic hollow cylinders and apply-
ing tools of nonlinear elasticity theory [34], it was shown
by De Martino et al. [27] that possible interacting acous-
tic mode triplets reduce to (LA, LA, LA), (LA, TW, TW),
(LA, FA, FA), and (TW, FA, FA) for which coupling coef-
ficients Vj j′ j′′ (k, k′, k′′) can be derived in terms of second
and third order elastic constants. In particular, a noteworthy
result of Ref. [27] is the quartic wave number dependence
VTWFAFA ∼ kk′k′′(k′ − k′′)R, which is at variance with the
standard cubic long-wavelength approximation Vj j′ j′′ ∼ kk′k′′
for type (i) triplets commonly found in classic textbooks
[35,36]. Within a lattice-dynamical treatment of three-phonon
interactions, this behavior in carbon nanotubes was previ-
ously overlooked [21]. As we show below, the weak coupling
strength between TW and FA modes gives rise to an intricate
scattering behavior of low-frequency TW modes in stress-free
and stretched tubes.

IV. ACOUSTIC MODE LEVEL ANALYSIS

Taking into account the full spectrum of three-phonon
interactions including type (i) and (ii) phonon triplets,
hereinafter, we evaluate acoustic phonon scattering rates
within our lattice-dynamical model according to Eqs. (1) and
(2) as a function of tensile strain ε. Specifically, in order to in-
fer the governing long-wavelength scaling relations � j ∼ εrks
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FIG. 2. Anharmonic scattering rates (left) of LA modes at room temperature and decomposition (right) into individual three-phonon
scattering channels in the region k � 0.04 π/a. Top and bottom panels show stress-free, ε = 0, and stretched, ε > 0, configurations of a (4,4)
carbon nanotube, respectively. Lattice-dynamical predictions as per Eqs. (1) and (2) are represented by empty plot markers. Solid curves are
obtained by substituting long-wavelength approximations into Eqs. (1) and (2). In the ka � 1 limit, the total LA scattering rate is dominated
by the decay process LA → FA + FA. Induced by strain, frequency hardening of FA modes causes total scattering rates to transition from a
scaling ∼k−1/2 in stress-free tubes to a scaling ∼ε−5/2k2 in strained tubes.

for j ∈ {LA, FA, TW}, we decompose wave number-resolved
scattering rates in the long-wavelength limit 0 < ka � 1 into
contributions that stem from individual three-phonon decay
and absorption channels, � j = ∑

j′, j′′ �
−
j j′ j′′/2 + �+

j j′ j′′ . For
brevity in notation, mode polarizations appearing in triple sub-
scripts are henceforth signified by single letters. For example,
a triplet of type (ii) involving LA modes will be represented
by LOO.

A. Longitudinal modes

Given the large group velocity of LA modes, selection
rules imposed by energy and quasimomentum conservation
in Eq. (2) imply a severely reduced three-phonon scattering
phase space available to long-wavelength LA modes. In Fig. 2,
we show total LA scattering rates under varying tensile strain
amplitudes at different wavelength scales. Decomposing our
data for small k, we detect three different types of scattering
channels that contribute to the total LA rate in the long-
wavelength limit: LA → FA + FA, LA → TW + TW, and
LA + OPT → OPT among which the first dominates in both
unstrained and strained tubes.

In the absence of lattice strain, one finds �ε=0
LA ∼ �−

LFF ∼
k−1/2 which can be traced back to the long-wavelength scal-
ing relations ωFA ∼ k2 and VLFF ∼ kk′k′′ (see Appendix B 1).
As can be noted from the top left-hand panel of Fig. 2, the
square root scaling breaks down at smaller wavelength scales
ka > 0.1π . This threshold conforms with the phonon disper-
sion data in Fig. 1, where it can been seen that FA mode
frequencies deviate from the quadratic trend once ka > 0.1π ,
indicating a regime where atomistic details entering into the
exact phonon dispersion become important.

In the presence of tensile lattice strain, ε > 0, lattice-
dynamical predictions in Fig. 2 indicate a reduction of

long-wavelength rates with increasing strain amplitude and
a transition away from the square root scaling in unstrained
tubes. In order to explain the strain dependence of �LA, we
resolve �−

LFF as per Eqs. (1) and (2) in the continuum limit∑
k → ∫

dk which requires knowledge of the functional wave
number dependencies of ωLA, ωFA, and VLFF. Here, we adopt
the dispersion fit lines of Fig. 1 and, under the assumption
that strain has no effect on the cubic wave number depen-
dence of three-phonon couplings, we set VLFF = C3 kk′k′′.
Representing the three-phonon coupling strength, the only
unknown parameter C3 is then fitted to lattice-dynamical data
of �−

LFF. This procedure yields the solid lines in Fig. 2 for
tubes in unstrained and strained configurations. In fitting our
lattice-dynamical predictions, we do not observe a systematic
variation of C3 under varying strain amplitudes, C3 � ε, which
leaves ωFA as the only strain dependent quantity entering into
�−

LFF. Thus, the strain induced downward shift of LA rates can
be solely attributed to the frequency hardening of FA modes.

The implications of a linearized FA mode dispersion are
best understood in the phonon frequency domain, where the
density of FA states DFA within the low-frequency interval
ω + dω goes from DFA ∼ ω−1/2 in unstrained to DFA ∼ ω0 in
strained systems. Loosely speaking, under increasing tensile
lattice strain, there are less and less preferential FA states that
a given long-wavelength LA mode can decay into. Assuming a
strictly linear FA mode dispersion with strain dependent pref-
actor, ωFA ∼ ε1/2|k|, one finds �ε>0

LA ∼ �−
LFF ∼ ε−5/2k2 (see

Appendix B 1).
The scattering amplitudes �−

LTT and �+
LOO, both of which

do not involve long-wavelength FA modes, remain relatively
insensitive to strain. A scaling behavior �−

LTT ∼ k2 is de-
ducible from a linear dispersion ωTW ∼ |k| and a coupling
coefficient VLTT ∼ kk′k′′ (see Appendix B 3). To produce the
solid lines in Fig. 2 for �−

LTT, as before, the unknown prefactor
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FIG. 3. Same as Fig. 2 but for FA modes. Both FA + FA → LA and FA + FA → TW absorption processes are affected by the strain
induced frequency shift of FA modes in the limit ka � 1. As dictated by the dominant scattering channel FA + FA → LA, total FA scattering
rates converge towards a constant in the case of stress-free tubes and gain a dependence ∼ε−1k2 in the presence of strain.

of VLTT is taken as a fit parameter to our lattice-dynamical
predictions. In the case of optical absorption processes, nu-
merical noise inherent to our evaluation of Eqs. (1) and (2)
becomes apparent to the extent that no continuous trend lines
for �+

LOO are discernable. Notwithstanding the uncertainty in
our prediction of �+

LOO, data points in Fig. 2 suggest that
optical absorption processes as well as TW mode interactions
contribute negligibly to the dissipation of long-wavelength LA
modes.

B. Flexural modes

Generally speaking, the three-phonon scattering phase
space for long-wavelength FA modes is reduced in that no
lower-lying phonon branch providing pathways for kinemat-
ically allowed decay processes exists. Our lattice-dynamical
predictions of strain dependent FA scattering rates are sum-
marized in Fig. 3. In the limit ka � 1, traceable scattering
contributions arise from two types of acoustic absorptions that
depend critically on tensile strain, namely FA + FA → LA
as well as FA + FA → TW, and from optical interbranch
absorptions FA + OPT → OPT which appear unaffected by
strain.

As is evident in Fig. 3, a reduction in the total scattering
rate of long-wavelength FA modes under increasing tensile
lattice strain derives from the dominant process FA + FA →
LA. The same three-phonon coupling coefficient VLFF enters
into decay �−

LFF and absorption amplitudes �+
FFL. Hence, ac-

cording to our earlier observation VLFF � ε in the case of LA
modes, a reduction in the total rate should be solely ascribable
to the strain induced hardening of FA modes. Indeed, by
setting VLFF = C3kk′k′′ and by fitting our lattice-dynamical
predictions of �+

FFL for different tensile strain amplitudes ε,
we find no systematic variation of C3 with increasing tensile
strain, leaving only ωFA as a strain dependent factor. Based on
analytical considerations of �+

FFL, adopting either a quadratic
ωFA ∼ k2, or a strictly linear FA mode dispersion ωFA ∼

ε1/2|k|, stress-free and stretched tubes give rise to �ε=0
FA ∼ k0

and �ε>0
FA ∼ ε−1k2, respectively (see Appendix B 2).

Comparing the absorption channels FA + FA → LA and
FA + FA → TW, the scaling relations of the latter �+

FFT ∼
k2 in unstrained and �+

FFT ∼ ε−1k4 in strained tubes stem
from VTFF ∼ kk′k′′(k′ − k′′) (see Appendix B 2). In our lattice-
dynamical calculations of VTFF, contributions that are cubic
in the axial wave number k cancel out, in agreement with
elasticity theory predictions [27]. Similar cancellation effects
manifest in the case of optical absorption processes FA +
OPT → OPT. Following a standard argument [36], for a given
long-wavelength acoustic phonon ( j, k), one expects a linear
scaling VjOO ∼ k to lowest order in k. In order to explain the
scaling �+

FOO ∼ k4 of optical interbranch transitions in Fig. 3,
however, we have to assume VFOO ∼ k2 (see Appendix B 4).

C. Twisting modes

The branch of long-wavelength TW modes lies in the
regime ωFA < ωTW < ωLA and, as compared to LA and FA
modes, a kinematically less restricted three-phonon scatter-
ing phase space may be anticipated. As shown in Fig. 4,
three-phonon transitions that contribute to the dissipation of
long-wavelength TW modes can be decomposed into two
types of low-energy acoustic and two types of high-energy
optical scattering channels. The former channels are TW →
FA + FA and TW + TW → LA, while the latter are given by
intra- and interbranch absorptions, TW + OPTa → OPTa and
TW + OPTa → OPTb, respectively. The relative importance
of these channels varies with tensile strain, causing a nontriv-
ial strain dependence in the total rate �TW.

In the case of unstrained tubes, ε = 0, the dominant scatter-
ing amplitudes stem from the decay into two flexural modes,
�−

TFF, and from optical intrabranch absorptions, �+
TOaOa

, both
of which are roughly of the same order of magnitude within
the resolved range of wave numbers. For the decay TW →
FA + FA, we have �−

TFF ∼ k1/2 which is derivable given a
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FIG. 4. Same as Fig. 2 but for TW modes. A third row of panels is added to distinguish the strain regimes 0 < ε < 4% (middle) and ε � 4%
(bottom). Processes involving two optical modes are further subdivided into contributions resulting from intrabranch, TW + OPTa → OPTa,
and interbranch, TW + OPTa → OPTb, transitions whose long-wavelength scaling is ∼k and ∼k2, respectively. For stress-free tubes, the decay
process TW → FA + FA goes as ∼k1/2 and becomes the dominant contribution to the total rate in the limit ka � 1. Under finite positive strain,
ε > 0, this process develops a dependence ∼ε−7/2k4 such that the scaling of the total becomes ∼k due to optical intrabranch transitions, which
are kinematically allowed as long as ε < 4%. In the strain regime ε � 4%, the total TW scattering rate inherits a dependence ∼k2 stemming
from optical interbranch transitions.

quartic scaling of VTFF and provided that ωFA ∼ k2 under
stress-free conditions (see Appendix B 1). Considering optical
absorption processes of acoustic modes, the scaling behavior
of related scattering amplitudes depends on whether momen-
tum is transferred between two crossing optical branches or
within the same branch. If we adopt the long-wavelength
approximation VTOO ∼ k [36], we find that differences in the
scattering phase space lead to �+

TOaOa
∼ k and �+

TOaOb
∼ k2,

explaining the scaling of intra- and interbranch transitions in
Fig. 4, respectively (see Appendix B 4).

In the presence of tensile strain, ε > 0, as before in
the case of �−

LFF, �+
FFL, and �+

FFT, frequency hardening of
long-wavelength FA modes strongly suppresses the scat-
tering amplitude of TW → FA + FA decay. Applying a fit
to our lattice-dynamical predictions of �−

TFF, we again no-
tice that strain has no influence on the coupling coefficient
VTFF, whose quartic wave number dependence together with
ωFA ∼ ε1/2|k| yields �−

TFF ∼ ε−7/2k4 (see Appendix B 1). For
moderately strained tubes, total TW scattering rates in the
long-wavelength limit remain lower bounded by optical intra-
branch transitions and the limiting behavior transitions from
∼k1/2 to ∼k.

Interestingly, at larger strain amplitudes, long-wavelength
scattering contributions arising from optical intrabranch ab-
sorption processes may become susceptible to lattice strain as

well. For our model of a (4,4) carbon nanotube, we find that
optical intrabranch transitions can occur only in the regime
ε < 4% beyond which the total TW rate abruptly gains a
k2 dependence resulting from optical interbranch transitions.
While no structural changes can be observed in the carbon
lattice at ε = 4%, an explanation for the discontinuity in the
total TW rate is found by considering the strain dependence of
optical phonon frequencies, see Fig. 5. A necessary condition
for the realization of intrabranch transitions is the existence of
a supersonic optical branch ωOPT∗ . As illustrated in Fig. 5(a),
one such branch whose slope ∂ωOPT∗/∂k surpasses the slope
of the TW branch can be singled out in the spectrum of
high-energy optical modes. Under tensile loading, the branch
ωOPT∗ softens, cf. Fig. 5(b), and its slope decreases. Fig-
ure 5(c) demonstrates that for strain amplitudes ε � 4% the
necessary condition ∂ωOPT∗/∂k > vTW for optical intrabranch
transitions is no longer fulfilled. A somewhat pathological
prediction of Eq. (2) reveals itself as the critical strain ampli-
tude ε = 4% is approached from below. Here, scattering rates
are predicted to increase, which can be traced to the vanishing
curvature, ∂2ωOPT∗/∂k2 → 0, in the wave number regions
depicted by the insets of Fig. 5(a), cf. Eqs. (B2) and (B14).
In passing, we can compare TW and LA mode velocities in
Fig. 5(c) to conclude that long-wavelength LA modes remain
protected from optical intrabranch transitions.
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FIG. 5. (a) The spectrum of harmonic phonon modes of a (4,4)
carbon nanotube at ε = 0 comprises one optical branch (OPT∗)
whose slope matches the slope of the TW branch, enabling intra-
branch transitions TW + OPTa → OPTa. (b) Frequency softening
of the OPT∗ branch under tensile strain. (c) The slope of the
OPT∗ branch decreases with increasing strain amplitude. At ε = 4%,
the velocity vTW exceeds ∂ωOPT∗/∂k and the scattering of long-
wavelength TW modes due to intrabranch transitions is kinematically
prohibited.

We point out that a recent numerical study on unstrained
nanowires by Rashid et al. [37] found low-frequency power-
law dependencies of three-phonon scattering rates for LA, FA,
and TW modes that conform to our results for unstrained
tubes. From the viewpoint of acoustic phonons, nanowires
and nanotubes are very similar. It seems therefore natural
to conjecture that considerations in the present study apply
to a broader class of one-dimensional materials, implying,
for example, that a strain induced reduction in the scattering
strength of long-wavelength acoustic phonons can be achieved
in nanowires as well.

V. THERMAL CONDUCTIVITY UNDER THE
RELAXATION TIME APPROXIMATION

Three-phonon scattering rates presented in Figs. 2–4 are a
key ingredient for determining the lattice thermal conductivity

of pristine nanotubes in the framework of the PBE. Under the
single-mode relaxation time approximation (RTA) [38], the
thermal conductivity of carbon nanotubes is given by

κRTA = 1

A

∑
j

∫ π/a

−π/a

dk

2π
h̄ων

∂nν

∂T
v2

ντν, (5)

where typically an annular cross-sectional area A = πDδ is
adopted with thickness δ = 3.35 Å corresponding to the inter-
layer distance in graphite, the phonon velocity is taken as the
slope of dispersion branches, vν = ∂ωv/∂k, and τν denotes
the phonon relaxation time. Following the standard practice
within the PBE formalism, intrinsic three-phonon scattering
rates as per Eqs. (1) and (2) are combined with a boundary
scattering rate to compute phonon relaxation times in tubes of
finite length L,

1

τν

= �ν + 2|vν |
L

. (6)

The boundary scattering term acts as an upper bound to
phonon relaxation times, which effectively filters out con-
tributions from low-frequency modes with small intrinsic
scattering rates and ensures a ballistic transport regime κ ∼ L
in the limit of short tubes [19]. Given the scaling laws of
anharmonic phonon scattering � j (k) ∼ εrks found in Sec. IV,
the integration over acoustic branch contributions in Eq. (5)
converges for L → ∞ in stress-free tubes, ε = 0, but diverges
in the presence of strain, ε > 0 (see Appendix C).

Usually, per-mode conductivities as per Eq. (5) are sam-
pled and summed over a finite grid of wave numbers, κ =
N−1 ∑

j

∑
k κ j (k), with grid spacing �k = 2π/Na, which

requires to test convergence with respect to N . Such an ap-
proach, however, is problematic if intrinsic lifetimes exhibit
a divergence, (�ν )−1 → ∞ for |k| → 0, as is the case for
LA and FA modes in strained and for TW modes in both
unstrained and strained tubes. For large but finite values
of L, sufficiently dense wave number grids to converge the
thermal conductivity might be out of reach by means of
lattice-dynamical calculations. Here, for our model of a (4,4)
carbon nanotube, we use the asymptotic fits to dispersion laws
and three-phonon scattering rates as depicted in Figs. 1–4 in
order to extrapolate the wave number dependencies of acous-
tic per-branch conductivities in the |k| → 0 limit. This in turn
allows us to numerically integrate acoustic long-wavelength
contributions all the way down to the Gamma point (k = 0),
κLW = ∫

0 dk κ j (k) for j ∈ {LA, FA, TW}.
In Fig. 6, we combine per-mode conductivities sampled

over a grid with N = 1000 points with acoustic mode contri-
butions integrated over the interval [−2π/Na; 2π/Na], κ =
κ + κLW, to show the conductivity predictions according
to Eqs. (5) and (6) in the limit of small strain amplitudes
ε. The relative importance of summed κ vs integrated
long-wavelength contributions κLW is displayed in Fig. 7.
As can be seen in Fig. 6, relatively long tubes L > 100 μm
are required to observe an enhancement of thermal transport
due to a reduction in the scattering rates of long-wavelength
acoustic modes in the presence of strain. For a tube with fixed
but very large L, frequency resolved conductivity contribu-
tions shift towards lower frequencies with increasing strain
amplitude. The lowest contributing frequencies, however, are
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FIG. 6. Lattice thermal conductivity under the relaxation time
approximation of a pristine (4,4) carbon nanotube at room tem-
perature as derived from strain-dependent three-phonon scattering
rates. In stress-free tubes, ε = 0, the conductivity converges with
tube length L. Under finite tensile strain, ε > 0, and in the limit of
long tubes, the acoustic phonon contributions to the lattice thermal
conductivity scale as κLA/FA ∼ ε5/4L1/2 and as κTW ∼ ln L (∼ L1/2)
for ε < 4% (� 4%).

ultimately determined by the tube length since, in principle,
low-frequency acoustic modes of wave number k cannot exist
in tubes of size L unless 1/k < L.

In the long-tube limit, LA modes in strained tubes yield
a conductivity contribution that scales as ∼ ε5/4L1/2 which
follows from �LA ∼ ε5/2k2. The same scaling relation is ob-
tained in the case of FA branch contributions which, in this
case, is attributable to �FA ∼ ε−1k2 as well as ωFA ∼ ε1/2k.
For TW modes, the long-wavelength scaling relation �TW ∼ k
leads to a logarithmically divergent conductivity contribution
in tubes subject to strain amplitudes 0 < ε < 4%. The dis-
continuity in the strain dependence of long-wavelength TW
scattering rates at ε = 4%, as detailed in Fig. 5, is filtered
out in short tubes but becomes apparent if L > 10 μm. For

FIG. 7. Relative importance of summed κ vs integrated κLW

acoustic thermal conductivity contributions as a function of tube
length L and strain amplitude ε. κ corresponds to a summation
over a wave number grid with N = 1000 points. Extrapolated con-
tributions stemming from long-wavelength acoustic modes in close
proximity to the Gamma point (k = 0) are captured by κLW but not
included in κ . A value of −1 on the vertical axis implies a conver-
gence of thermal conductivity with respect to the wave number grid
resolution N , whereas larger values justify an extrapolation approach.

strain amplitudes ε � 4%, a divergence ∼L1/2 of the TW
branch conductivity contribution is implied by �TW ∼ k2. In
the bottom panel of Fig. 6, we show total thermal conductiv-
ity predictions including optical branch contributions which,
however, do not increase significantly with tube length and
are therefore of minor importance in the large-L regime. Re-
markably, under the RTA, long-wavelength TW modes are
predicted to be the dominant heat carriers in unstrained tubes
as the tube length approaches the millimeter length scale.

As can be inferred from Fig. 7, per-branch acoustic con-
ductivity data sampled over a grid with N = 1000 discrete
wave numbers gives a poor representation of the total thermal
conductivity according to Eqs. (5) and (6) as the tube length
L becomes large. In unstrained tubes, ε = 0, it is the square
root divergence of intrinsic TW lifetimes (�TW)−1 ∼ k−1/2

which requires grid calculations with N � 1000 to converge
conductivity predictions in the long-tube limit. Convergence
issues with respect to the wave number grid resolution N
are generally exacerbated in the presence of tensile strain,
ε > 0, where all three acoustic mode polarizations exhibit a
singularity of the form (� j )−1 ∼ k−r with r � 1 in the long-
wavelength limit.

VI. DISCUSSION

Two approximations have been employed in the present
study that deserve further scrutiny in the future. For one,
phonon frequency shifts at finite temperature induced by lat-
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tice anharmonicity have been assumed to be negligible. In the
case of two-dimensional crystals, by taking into account the
real part of the phonon self-energy, it was noted [39] that out-
of-plane vibrations are renormalized at finite temperature to
the extent that the quadratic dispersion in stress-free samples
under the harmonic lattice approximation becomes linear in
the long-wavelength limit. For unstrained tubes, the obtained
scaling laws of three-phonon scattering presented in Sec. IV
critically depend on the condition that FA mode frequen-
cies vanish quadratically in the long-wavelength limit, ωFA ∼
k2. Taking a temperature dependent, possibly linearized, FA
mode dispersion as input to a perturbative calculation of
phonon-phonon interactions, low-frequency dissipation rates
� j (|k| → 0) could be drastically decreased, as we demon-
strate in this work by examining tubes under tensile load. In
a similar context, while studying phonon-phonon interactions
in a semiflexible monoatomic chain, Santhosh and Kumar [40]
pointed out the necessity of anharmonic frequency renormal-
ization, since the standard perturbative treatment of harmonic
phonon modes violates the notion of well-defined quasi-
particles, requiring � j (k) < ω j (k) as |k| → 0. In particular,
according to Ref. [40], longitudinal, ωx ∼ k, and transverse,
ωy ∼ k2, modes of a semiflexible chain under the harmonic
lattice approximation give rise to �x ∼ |k|−1/2 and �y ∼ k0,
in agreement with our findings for LA and FA modes in
unstrained tubes, cf. Sec. IV A and Sec. IV B. Effective long-
wavelength dissipation rates under phonon renormalization,
as predicted in Ref. [40], are instead significantly reduced.

Another point worthy of future research relates to the
approximation of thermal conductivity. Previous studies em-
phasized the inadequacy of the RTA in the case of one-
[21,24,41,42] and two-dimensional [17,18,43,44] materials,
noting the importance of obtaining the thermal conductivity
from an exact solution of the PBE. Going beyond the RTA,
one is confronted with numerically solving a large set of linear
equations [38,45],

Xν =
∑
ν ′

Pνν ′ψν ′ . (7)

Here, the inhomogeneity Xν and the collision kernel Pνν ′

are given in terms of phonon dispersion data and phonon
scattering rates, respectively, while the unknowns ψν are the
nonequilibrium phonon deviation functions, which ultimately
determine the thermal conductivity, κ ∼ N−1 ∑

ν Xνψν (up to
some prefactors) [38,45]. The RTA approach to lattice heat
transport, as pursued in Sec. V, is tantamount to keeping
only the diagonal terms of the collision kernel, (Pψ )ν ≈ Pνψν

[38,45]. It is sometimes noted that RTA predictions generally
underestimate the true thermal conductivity [46,47]. There-
fore, given our results presented in Sec. V, one is tempted
to conclude that nanotubes under tensile strain act as su-
perdiffusive heat conductors which give rise to κ ∼ Lη with
η � 1/2 in the long-tube limit. In the case of graphene,
a similar reasoning based on the RTA was applied by the
authors of Ref. [16] to conclude that the thermal conductiv-
ity of isotropically strained sheets should be logarithmically
divergent with domain size. In pursuing an exact solution
approach, however, some of the same authors later arrived
at the conclusion that the conductivity of pristine graphene
should remain upper bounded, even in the presence of strain

[17]. By taking into account the low-frequency three-phonon
scattering rates of Sec. IV, it would be desirable to make
more rigorous analytical statements about the long-tube limit
of thermal conductivity based on Eq. (7). Very recently, a
convergence with tube length was reported by Barbalinardo
et al. [24], who derived the thermal conductivity of a (10,0)
nanotube in stress-free condition by numerically inverting the
full collision kernel Pνν ′ . Under the assumption of tubes in per-
fect mechanical equilibrium, such convergent behavior falls
into line with RTA level predictions. Still, the role of tensile
strain within exact solution approaches to the PBE remains to
be clarified.

VII. CONCLUSIONS

Taking as example a (4,4) carbon nanotube, we have per-
formed numerical lattice-dynamical calculations to address
the role of acoustic phonons in low-dimensional nanotube
heat transport. By supporting our calculations with analytical
considerations and by making recourse to continuum theories,
we derived the general long-wavelength scaling relations of
acoustic phonon scattering rates that follow from standard an-
harmonic perturbation theory. Based on our model, the onset
of long-wavelength behavior in tubes of radius R is predicted
at around |k|R < 0.3. We expect that somewhat smaller wave
numbers are needed in the case of chiral nanotubes, which
tend to have larger translational unit cells.

As was shown earlier in the case of graphene [16], the
three-phonon scattering strength of long-wavelength acous-
tic modes can be reduced by tensile lattice strain whenever
acoustic-flexural mode type processes are dominant. The scat-
tering phase space for these processes is greatly reduced by a
strain-induced hardening of flexural mode frequencies. In go-
ing from a two-dimensional phonon scattering phase space in
graphene to a one-dimensional one, this effect becomes even
more pronounced in nanotubes. As compared to longitudinal
modes, long-wavelength twisting modes in nanotubes couple
only weakly to flexural modes. Twisting modes have diver-
gent anharmonic lifetimes in the long-wavelength limit in
both unstrained and strained tube configurations, which makes
k-space integration in the PBE-RTA formalism challenging.

Arguably, for nanotubes under tensile strain, PBE-RTA
predictions provide strong evidence for the nonexistence of
an upper bound to thermal conductivity, suggesting the possi-
bility of superdiffusive heat transport in macroscopically long
nanotubes. Whether exact solution approaches to the PBE, or
the systematic inclusion of four-phonon scattering processes,
help to renormalize a formally divergent thermal conductivity
awaits further investigation.
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APPENDIX A: THREE-PHONON COUPLING
COEFFICIENTS

For a one-dimensional monoatomic crystal, the three-
phonon coupling coefficients entering into Eq. (2) are given
by [35,48]

Vj j′ j′′ (k, k′, k′′) = 1

m3/2

∑
L′,L′′

eik′rL′ eik′′rL′′

×
∑
l,l ′,l ′′

∑
α,α′,α′′

wα
l ( j, k)wα′

l ′ ( j′, k′)

× wα′′
l ′′ ( j′′, k′′)�α,α′,α′′

0l,L′l ′,L′′l ′′ , (A1)

where m denotes the atomic mass, the first sum runs over
translational unit cells residing at rL′ (rL′′ ), the second sum
runs over atomic sites within a unit cell, the third sum ex-
tends over Cartesian coordinates, the w’s are the harmonic
phonon eigenvectors, and � is the third order force constant
tensor.

For carbon nanotubes, in order to accurately determine the
coupling coefficients of acoustic phonons in the limit of small
wave numbers, it is crucial to ensure that the tensor � obeys
translational and rotational sum rules [25]. By adopting an
empirical Tersoff type interaction potential and by deriving
force constants analytically, these sum rules are naturally cap-
tured in our calculations.

APPENDIX B: THREE-PHONON SCATTERING RATES IN THE LOW-FREQUENCY LIMIT

Starting from Eqs. (1) and (2), we aim to determine the scaling of the transition amplitudes �±
j j′ j′′ (k) for acoustic modes,

j ∈ {LA, FA, TW}, in the long-wavelength limit 0 < ka � 1. The quasimomentum selection rule �k±k′−k′′,2πm/a in Eq. (2) can
be invoked to resolve the sum over k′′ in Eq. (1). Setting k′′ = k ± k′ − 2πm/a, the integer m = 0,±1 is chosen such that the
sum k ± k′ lies within the first zone [−π/a; π/a]. Three-phonon scattering events involving low-frequency phonons necessarily
correspond to normal processes (m = 0) [49], and for a given mode triplet ( j, j′, j′′) we have

�±
j j′ j′′ (k) = a

2π

∫ π/a

−π/a
dk′ h̄π

4ω j (k)ω j′ (k′)ω j′′ (k ± k′)

[
n j′ (k′) + 1

2 ± 1
2

]
n j′′ (k ± k′)

n j (k)
|Vj j′ j′′ (k,±k′,−k ∓ k′)|2 δ(�±

j j′ j′′ (k, k′)),

(B1)

where the function �±
j j′ j′′ (k, k′) = ω j (k) ± ω j′ (k′) − ω j′′ (k ± k′) is introduced to represent the condition of energy conservation.

Noting that n j (k) = [exp(h̄ω j (k)/kBT ) − 1]−1 ≈ kBT/h̄ω j (k), Eq. (B1) becomes

�±
j j′ j′′ (k) ∼

[
n j′ (k∗) + 1

2 ± 1
2

]
n j′′ (k ± k∗)

ω j′ (k∗) ω j′′ (k ± k∗)

|Vj j′ j′′ (k,±k∗,−k ∓ k∗)|2∣∣ ∂�±
j j′ j′′ (k,k∗ )

∂k′
∣∣ , (B2)

where the wave number k∗ = k∗
j j′ j′′ (k) follows from �±

j j′ j′′ (k, k∗) = 0.

1. Decay into two flexural modes

Let us first consider transitions where a long-wavelength acoustic phonon from a linear branch decays into two flexural
acoustic modes, LA/TW → FA + FA. As per Eqs. (3) and (4), k∗ is the positive root of

�−(k, k∗) = v jk −
√
T1εk∗2 + Y (ε)k∗4 −

√
T1ε(k − k∗)2 + Y (ε)(k − k∗)4 = 0, (B3)

where v j = vLA/TW and Y (ε) = v2
LAR2/2 − T2ε. The condition of energy conservation can be resolved analytically in two

limiting cases by either assuming a strictly quadratic dispersion of flexural modes under stress-free conditions, ωFA ∼ k2, or
by adopting a strictly linear dispersion in the presence of tensile strain ε, ωFA ∼ ε1/2k. In the former scenario, we have

k∗ = k

2
+

√
v j

2Y (0)
k − k2

4
and

∣∣∣∣∂�−(k, k∗)

∂k′

∣∣∣∣ = 2
√

2
√
Y (0)v jk − Y (0)k2, (B4)

where both expressions go as k1/2. In the low-frequency regime, nFA(k) ≈ kBT/h̄ωFA(k), and by combining Eqs. (B2) and (B4)
we find

�−
jFF(k) ∼ k−9/2|VjFF|2 ∼

{
k−1/2 if j = LA,

k1/2 if j = TW,
(B5)

where the standard long-wavelength approximation [35,36] VLFF ∼ kk′k′′ applies to LA → FA + FA but cancellation effects in
Eq. (A1) lead to VTFF ∼ kk′k′′(k′ − k′′) [27] in the case of TW → FA + FA. If, on the other hand, a strictly linear flexural mode
dispersion is assumed, ωFA ∼ ε1/2k, we have

k∗ =
(

1 + v j√
T1ε

)
k

2
and

∣∣∣∣∂�−(k, k∗)

∂k′

∣∣∣∣ = 2
√
T1ε, (B6)
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which, when plugged into Eq. (B2), leads to

�−
jFF(k) ∼ ε−5/2k−4 |VjFF|2(

1 − v2
j /T1ε

)2 ∼
{
ε−5/2k2 if j = LA,

ε−7/2k4 if j = TW,
(B7)

where the long-wavelength approximations of VLAFAFA and VTWFAFA remain unaffected by tensile lattice strain, as suggested by
our numerical evaluation of Eq. (A1).

2. Coalescence of two flexural modes

To determine the scaling of �+
FAFA j′′ for j′′ ∈ {LA, TW}, we again solve the condition of energy conservation �+(k, k∗) = 0

for k∗ and consider the cases ωFA ∼ k2 and ωFA ∼ ε1/2k2 separately. In the unstrained case, ε = 0, we have

k∗ = v j′′

2
√
Y (0)

−
√

v2
j′′

4Y (0)
+ v j′′√

Y (0)
k − k2 and

∣∣∣∣∂�+(k, k∗)

∂k′

∣∣∣∣ =
√

v2
j′′ + 4

√
Y (0)v j′′ k − 4Y (0)k2. (B8)

Here, the first expression goes as k and the second converges towards v j′′ . In evaluating Eq. (B2), we can assume
nFA(k) + 1 ≈ kBT/h̄ωFA(k) and find

�+
FF j′′ (k) ∼ k−6|Vj′′FF|2 ∼

{
k0 if j′′ = LA,

k2 if j′′ = TW,
(B9)

where it is possible to reapply the long-wavelength approximations of VLFF and VTFF since Vj j′ j′′ (k,±k′,−k ∓ k′) is symmetric
under exchange of phonon indices ( j, k) ↔ ( j,±k′) ↔ ( j′′,−k ∓ k′) [48]. For strained tubes, ε > 0, we find

k∗ =
√
T1ε − v j′′√
T1ε + v j′′

k and

∣∣∣∣∂�+(k, k∗)

∂k′

∣∣∣∣ =
√
T1ε + v j′′ (B10)

and transition rates according to Eq. (B2) scale as

�+
FF j′′ (k) ∼ ε−2k−4|Vj′′FF|2 ∼

{
ε−1k2 if j′′ = LA,

ε−1k4 if j′′ = TW.
(B11)

3. One longitudinal and two twisting modes

In a similar manner, the strain independent scaling relations

�−
LTT(k) ∼ k2 and �+

TTL(k) ∼ k2 (B12)

can be inferred from Eq. (B2) by noting that VLTT ∼ kk′k′′.

4. Absorption by optical phonons

If a low-energy acoustic mode ( j, k) is absorbed by two high-energy optical phonons, energy conservation implies

�+(k, k∗) = ω j (k) + ωOPTa (k∗) − ωOPTb (k∗ + k) = 0. (B13)

Such transitions manifest at some finite wave number k∗ ∼ const . either in the form of intra-, a = b, or interbranch transitions,
a �= b, where two optical branches cross. For ka � 1, we can expand ωOPTb around k∗ to show that∣∣∣∣∂�+(k, k∗)

∂k′

∣∣∣∣ =
∣∣∣∣∂ωOPTa (k∗)

∂k′ − ∂ωOPTb (k∗)

∂k′ − ∂2ωOPTb (k∗)

∂k′2 k − . . .

∣∣∣∣ ∼
{

k if a = b,

const . if a �= b,
(B14)

and it follows from Eq. (B2) that transition rates scale as

�+
jOaOb

(k) ∼
{

k−1|VjOO|2 if a = b,

|VjOO|2 if a �= b.
(B15)

Three-phonon coupling coefficients for one long-wavelength acoustic ( j, k) and two optical phonons VjOO are of at least linear
order in k [36]. Our data in Fig. 3 for optical interbranch transitions of FA modes suggests VFOO ∼ k2, whereas the scaling
behavior of TW modes as shown in Fig. 4 suggests VTOO ∼ k for both intra- and interbranch transitions.

APPENDIX C: ASYMPTOTIC STRAIN AND
TUBE-LENGTH DEPENDENCE OF κRTA

Under the RTA, the conductivity contribution κ j of long-
wavelength acoustic modes in tubes of length L follows from

Eqs. (5) and (6) as

κ j ∼ L
∫ kcut

0
dk

ξ 2
1 k2t

ξ2Lks + ξ1kt
, (C1)
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where it is assumed that n = kBT/h̄ω, v = ξ1kt , and � = ξ2ks

hold true below some finite wave number kcut. For linear
and quadratic dispersion branches, we have t = 0 and t = 1,
respectively. The expression (C1) is divergent for L → ∞ if

s � 2t + 1. This is the case for stretched tubes, ε > 0, where
we have s ∈ {1, 2} and t = 0. The integral is then straightfor-
wardly evaluated with strain dependent coefficients ξ1 and ξ2,
yielding the long-tube scaling relations as described in Fig. 6.
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