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In this paper, we address lattice heat transport in single-walled carbon nanotubes (CNTs) by a quantum
mechanical calculation of three-phonon scattering rates in the framework of the Boltzmann transport equation
(BTE) and classical molecular dynamics (MD) simulation. Under a consistent choice of an empirical, realistic
atomic interaction potential, we compare the tube-length dependence of the lattice thermal conductivity (TC) at
room temperature determined from an iterative solution of the BTE and from a nonequilibrium MD (NEMD)
approach. Qualitatively similar trends are found in the limit of short tubes, where an extensive regime of ballistic
heat transport prevailing in CNTs of lengths L � 1 μm is independently confirmed. In the limit of long tubes,
the BTE approach suggests a saturation of TC with tube length, whereas direct NEMD simulations of tubes
extending up to L = 10 μm are demonstrated to be insufficient to settle the question of whether a fully diffusive
heat transport regime and an intrinsic value of TC exist for CNTs. Noting that acoustic phonon lifetimes lie at the
heart of a saturation of TC with tube length as per the BTE framework, we complement the quantum mechanical
prediction of acoustic phonon lifetimes with an analysis of phonon modes in the framework of equilibrium MD.
A normal mode analysis with an emphasis on long-wavelength acoustic modes corroborates the BTE prediction
that heat transport in CNTs in the long tube limit is governed by the low attenuation rates of longitudinal and
twisting phonons.
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I. INTRODUCTION

Carbon nanotubes (CNTs) are commonly suggested as a
test ground for the unusual thermal transport properties that
manifest in low-dimensional lattice models [1]. The most
prominent anomaly of heat conduction in low dimensions is
the domain-size dependence of lattice thermal conductivity
(TC) κ . For some strictly one-dimensional models of nonlin-
ear chains, a power-law divergence of TC with system size L
has been predicted, κ ∼ Lα where 0 < α < 1, and linked to
the presence of weakly damped long-wavelength vibrational
modes [2,3]. Advancing from model systems to real physi-
cal materials with reduced dimensionality, numerous studies,
both experimental [4–7] and theoretical [8–18], have aimed
at unveiling the tube-length dependence of CNT thermal con-
ductivity. In CNTs, heat is carried predominantly by phonons
[19–21] and, considering pristine tubes, intrinsic resistance to
phonon transport arises exclusively from lattice anharmonic-
ity. In comparison to other materials, phonons in CNTs exhibit
a relatively long intrinsic mean-free path and it is generally
acknowledged that TC becomes a length-dependent quantity
at the submicron scale [22] where physical boundaries provide
a major contribution to thermal resistance [23]. In the limit
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of long tubes, however, conflicting predictions persist as to
whether TC saturates to a finite, length-independent value
[5,10–12,14,15,18] as is the case for diffusive (Fourier) trans-
port or diverges with tube length [4,6,8,9,13,16] such that heat
transport is in fact superdiffusive.

Existing theoretical predictions of the phononic TC as a
function of tube length stem either from an explicit quan-
tum mechanical calculation of phonon scattering rates in
the framework of the Boltzmann transport equation (BTE)
[10,11,14] or from classical molecular dynamics (MD) sim-
ulations [8,9,12,13,15–18]. In determining the resistance to
heat flow in pristine crystals, the BTE approach relies on a per-
turbative treatment of lattice anharmonicity and calculations
typically truncate scattering processes with more than three
phonons involved. Mingo et al. [10] argued that this limitation
causes TC predictions to diverge in the limit of long tubes
since it is higher-order phonon-phonon scattering that ensures
the dissipation of heat carried by long-wavelength acous-
tic phonons. Treating higher-order processes approximately,
BTE calculations by Lindsay et al. indicated that millimeter
long tubes are required to observe fully diffusive transport in
CNTs [14]. Trends of TC as a function of system size derived
from MD, on the other hand, naturally include all orders of
phonon-phonon interaction. Still, based on MD, some studies
reported a power-law divergence of TC [8,9,13,16], whereas
others found convergence with tube length [12,15,18].
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Arguably, the use of classical phonon statistics in MD intro-
duces significant error into TC predictions when applied to
materials like CNTs that possess a high Debye temperature
[11]. Yet general trends of TC with tube length, in particular
the emergence of a diffusive transport regime, should remain
unaffected by the choice of quantum or classical phonon
statistics in either computational framework.

In an effort to shed light on the discrepant theoretical pre-
dictions, this paper revisits the length dependence of phonon-
mediated heat transport in CNTs by comparing trends that
ensue from both the BTE and the MD framework under a
consistent choice of atomic interaction potential. We employ
an iterative solution to the linearized BTE [24–26] which, in
addition to anharmonic three-phonon processes, incorporates
the finite tube length as a source of resistive phonon scatter-
ing [10,14,27]. By simultaneously conducting nonequilibrium
molecular dynamics (NEMD) simulation of CNTs of varying
lengths, we contrast the transition of heat transport away
from the ballistic regime as predicted by both computational
approaches for tubes of distinct diameters. Through NEMD
simulations, we show that TC values continue to increase even
if the distance between heat source and sink is extended up to
L = 10 μm to the effect that no conclusions about a saturation
with tube length can be drawn. Bypassing the computational
limitations of the NEMD approach, the large-L limit of
heat transport is addressed in the BTE framework. Here, we
demonstrate that a fully diffusive heat transport regime can
be established and traced back to the three-phonon scattering
rates of acoustic phonons in the long-wavelength limit. To fur-
ther elucidate the role of acoustic phonons in determining the
length dependence of TC and to allow for a possible impact
of higher-order phonon-phonon scattering, we subsequently
perform normal mode analysis (NMA) in the framework of
equilibrium molecular dynamics [28–31]. In contrast to earlier
work that applied NMA to study thermal transport properties
of CNTs [12,31,32], we exclusively consider long-wavelength
acoustic modes. By omitting high-frequency phonon modes
and by calculating acoustic normal mode coordinates on the
fly, we are able to resolve modes of unprecedented wavelength
in tubes of varying diameters. The so-detected phonon life-
times extend into the nanosecond range, which substantiates
the decisive role of emerging long-wavelength acoustic modes
in governing the length dependence of TC.

This paper is structured as follows. In Sec. II, we provide
a general description of the computational frameworks used
to study phonon-mediated heat transfer in crystals. For CNTs,
details specific to the calculation of TC employed in this work
are given in Sec. III. We discuss our results in Sec. IV and
conclude in Sec. V.

II. FRAMEWORKS TO CALCULATE PHONONIC
THERMAL CONDUCTIVITY

A. Boltzmann transport equation

In the framework of the Boltzmann transport equation
(BTE), lattice vibrations of a periodic crystal are conceived
as a kinetic gas of phonons. The BTE for phonons states that
a temperature gradient leads to a drift motion of phonons,
which is balanced by resistive particlelike scattering processes
[33–35]. This notion allows one to express the contributions

of individual phonons to the conductivity as

κx
λ = cλv

2
x,λτλ, (1)

where the label λ = (q, j) subsumes the wave vector q and po-
larization dependence j of each phonon. Mode-specific con-
ductivity contributions follow from the volumetric heat capac-
ity cλ = 1/V (h̄ωλ∂nλ/∂T ) with nλ = [exp (h̄ωλ/kBT ) − 1]−1

standing for the Bose-Einstein statistics, the phonon group ve-
locity in transport direction vx,λ = ∂ωλ/∂qx, and the lifetime
τλ which constitutes a measure of resistive phonon scattering.
Phonon heat capacities cλ and group velocities vx,λ are derived
from a harmonic lattice calculation that requires second-order
force constants �α,α′

lb,l ′b′ and a diagonalization of the dynamical
matrix

Dα,α′
b,b′ (q) = 1√

mbmb′

∑
l ′

�α,α′
0b,l ′b′ eiq·rl′ (2)

whose eigenvalues D(q)eλ = ω2
λeλ yield the harmonic phonon

spectrum ωλ = ω j (q). In the above expression, superscripts
run over the three spatial dimensions and rl ′ represents the
position vector of the l ′th unit cell whose atoms of mass mb

reside at rl ′,b = rl ′ + rb.
To the extent that anharmonic terms of the interatomic

interaction potential can be regarded as a weak perturbation
of harmonic phonon modes, finite phonon lifetimes resulting
from anharmonic three-phonon scattering processes can be
calculated in lowest-order perturbation theory [36,37] as

1

τ 0
3,λ

= 1

N

( −∑
λ′,λ′′

1

2
	−

λ,λ′,λ′′ +
+∑

λ′,λ′′
	+

λ,λ′,λ′′

)
, (3)

with N denoting the number of translational unit cells and
where the first and second sums extend over phonon splitting
λ → λ′ + λ′′ and absorption λ + λ′ → λ′′ processes with in-
dividual transition amplitudes [36,37] given as

	±
λ,λ′,λ′′ = h̄π

4ωλωλ′ωλ′′

{
nλ′ − nλ′′

1 + nλ′ + nλ′′

}
|V ±

λ,λ′,λ′′ |2. (4)

Here, the top (bottom) row of the curly brackets corre-
sponds to absorption (splitting) processes and transition ma-
trix elements depend on second-order �α,α′

lb,l ′b′ and third-order

�α,α′,α′′
lb,l ′b′,l ′′b′′ force constants [36,37],

V ±
λ,λ′,λ′′ =

∑
α, α′, α′′

b, l ′b′, l ′′b′′

�α,α′,α′′
0b,l ′b′,l ′′b′′

eλ
αbe±λ′

α′b′e−λ′′
α′′b′′√

mbmb′mb′′
e±iq′·rl′ e−iq′′·rl′′ ,

(5)

where eλ
αb denotes the displacement of b-type atoms in α

direction as prescribed by the λth phonon eigenvector eλ of
the dynamical matrix (2) and −λ ≡ (−q, j). In Eq. (3), the
summation symbols are marked with a plus and minus sign,∑±, which signifies a restriction to three-phonon processes
that obey both the energy ωλ ± ωλ′ = ωλ′′ and the momentum
q ± q′ = q′′ + G, selection rules with G denoting a reciprocal
lattice vector. G = 0 refers to normal and G �= 0 to umklapp
processes.

The superscript of lifetimes τ 0
3,λ computed by means of

Eqs. (3)–(5) indicates a so-called relaxation time approxi-
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mation (RTA). Plugging the RTA lifetimes τ 0
3,λ into Eq. (1)

constitutes an approximation to TC inasmuch as assuming
that both normal and umklapp processes contribute equally
to the dissipation of heat inside a crystal, while in fact normal
processes contribute only indirectly by redistributing the per-
phonon mode energy [34]. Derived from a formally exact
solution of the linearized BTE for phonons [24,25,36,37], a
more accurate description of lifetimes appearing in Eq. (1) is
given by

τλ = τ 0
λ (1 + �λ), (6)

where τ 0
λ represents an RTA solution to TC and the interplay

of normal and umklapp scattering causing thermal resistance
is reflected by the term �λ which, if only anharmonic three-
phonon processes in lowest-order perturbation theory are con-
sidered, takes the form

�λ = 1

N

−∑
λ′,λ′′

1

2
	−

λ,λ′,λ′′ (ξλ,λ′′τλ′′ + ξλ,λ′τλ′ )

+ 1

N

+∑
λ′,λ′′

	+
λ,λ′,λ′′ (ξλ,λ′′τλ′′ − ξλ,λ′τλ′ ), (7)

with the shorthand notation ξλ,λ′ = ωλ′vx,λ′/ωλvx,λ and scat-
tering amplitudes defined by Eq. (4). The unknown lifetimes
τλ of each mode are coupled through the term �λ such that a
solution to Eq. (6) may be found by carrying out an iteration
τ

(k+1)
λ = τ 0

λ (1 + �
(k)
λ ) with �

(0)
λ initially calculated based on

RTA lifetimes τ 0
λ .

Starting from Eq. (3), additional phonon scattering rates
stemming from processes such as phonon-isotope (τ 0

iso,λ)−1

or phonon-boundary scattering (τ 0
bs,λ)−1 can be included into

the BTE framework by expanding RTA lifetimes according to
Matthiessen’s rule as

1

τ 0
λ

= 1

τ 0
3,λ

+ 1

τ 0
iso,λ

+ 1

τ 0
bs,λ

+ . . . (8)

and, if the dissipative vs nondissipative character of the added
scattering channels is considered, by further extending the
term �λ [36,37].

B. Nonequilibrium molecular dynamics

Heat transport through a crystal can be probed directly
by means of molecular dynamics (MD). With the goal of
determining a crystal’s TC, the nonequilibrium molecular
dynamics (NEMD) method [38–42] consists in the simulation
of a steady-state heat transport regime during which the very
definition of TC from Fourier’s law is applied,

κx = − Jx

∇T
, (9)

where Jx is the heat flux density along the direction of the
temperature gradient ∇T .

Within the framework of MD, a nonequilibrium transport
regime can be induced, for example, by directly thermostat-
ting a heat sink and a source at different temperatures [42]
or, indirectly, by continuously swapping atomic velocity vec-
tors between two predetermined hot and cold regions of the
simulation domain [40]. To measure a temperature profile, the

simulation domain is divided into M slabs along the transport
direction, {x1, . . . , xM}. While observing the temperature of
each slab, {T (x1), . . . , T (xM )}, the system is propagated in
time until the steady-state transport regime is established.
Finally, a gradient ∇T can be inferred from the temperature
profile which, in conjunction with the tallied heat flux Jx,
enables the calculation of TC by means of Eq. (9).

It is worth mentioning that NEMD-derived temperature
profiles often exhibit nonlinearities in the proximity of ther-
mostatted regions. Typically observed abrupt jumps of tem-
perature occurring at the boundaries of the hot and cold
reservoirs leave some ambiguity as to the definition of the
temperature gradient ∇T . This ambiguity in the NEMD
method was recently addressed by the work of Li et al. [43],
showing that fitting only the linear part of the temperature
profile leads to an overestimation of TC as calculated by
Eq. (9). Instead, conclusive evidence was given in [43] that
the NEMD method requires to compute ∇T = �T/L, where
�T is the temperature difference between the heat source and
sink which are separated by a distance L.

C. Normal mode analysis

Another approach to TC at the level of individual phonon
contributions involves an analysis of phonons in their rep-
resentation as vibrational waves describing the decoupled
normal modes of a harmonic crystal. The normal mode co-
ordinates of a crystal with N unit cells,

Qλ(t ) = 1√
N

∑
l

eλ∗ · ũl (t ) eiq·rl , (10)

Q̇λ(t ) = 1√
N

∑
l

eλ∗ · ṽl (t ) eiq·rl , (11)

can be calculated by projecting mass-weighted atomic dis-
placements ũl,b = √

mbul,b and velocities ṽl,b = √
mbvl,b

onto complex-conjugated phonon eigenvectors eλ∗ [44]. In
equilibrium molecular dynamics (EMD), atomic phase-space
coordinates are propagated in time under the influence of
realistic interatomic potentials whose anharmonic terms cause
the harmonic mode energy

Eλ(t ) = 1

2
Q̇λ(t )Q̇∗

λ(t ) + ω2
λ

2
Qλ(t )Q∗

λ(t ) (12)

to fluctuate with a mode-specific timescale τMD
λ . Adopting

the BTE description of TC in terms of Eq. (1), the program
of normal mode analysis (NMA) estimates intrinsic phonon-
specific thermal resistance by setting τλ = τMD

λ [28–31].
Given a time series of normal mode coordinates obtained

by means of equilibrium MD through Eqs. (10) and (11), the
timescale of energy fluctuations τMD

λ can be determined, for
example, by fitting an exponential decay to the normalized au-
tocorrelation function of the harmonic per-mode energy [29]

〈Eλ(0)Eλ(t )〉
〈Eλ(0)Eλ(0)〉 = e−t/τMD

λ (13)

or, alternatively, by fitting the spectral density of the kinetic
mode energy to a Lorentzian line shape [30,31,37]

Kλ(ω) = Cλ

(ω − ωλ)2 + (
2 τMD

λ

)−2 , (14)
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where Kλ(ω) = |F[Q̇λ(t )]|2 implies a Fourier transformation
and Cλ as well as ωλ are left as additional fitting parameters.
The latter approach requires input only in the form of atomic
velocities which, however, comes at the cost of relying on a
nonlinear fitting routine.

III. COMPUTATIONAL DETAILS

Throughout this work, we consider armchair CNTs of
chirality (n, n) with diameter D = (

√
3a/π ) n, where the

translational lattice constant along the tube is a ≈ 2.5 Å. For
the cross-sectional area, we adopt the prevalent notion of
an annular ring A = πDδ with δ = 3.35 Å chosen to be the
interlayer distance in graphite. The interatomic interaction po-
tential and related force constants are assumed to be given by
a Tersoff potential [45,46] with an optimized parametrization
for sp2-bonded carbon [47].

Calculations in the BTE framework are performed with the
software package SHENGBTE [48]. To calculate RTA lifetimes
as stated in Eqs. (3)–(5), phonons are assumed to take on
wave numbers q = (2π/Na)m with integers −N/2 < m �
N/2 implying a discretization of the CNT’s first Brillouin
zone with N equidistant wave numbers. In order to address
the truncation of energy-conserving three-phonon processes
not sampled by the imposed q grid, we adopt the default
Gaussian smearing scheme implemented in SHENGBTE which
aims to approximate transition amplitudes in the limit of
continuous wave numbers. Furthermore, in accordance with
earlier work on the length dependence of TC [10,14], we ex-
tend the program to take into account a tube-length-dependent
boundary scattering rate (τ 0

bs,λ)−1 = 2|vλ|/L, so that final RTA
lifetimes are computed as (τ 0

λ )−1 = (τ 0
3,λ)−1 + (τ 0

bs,λ)−1. This
choice of (τ 0

bs,λ)−1 was shown to correctly reproduce the
solution of the BTE in the limit of ballistic heat conduc-
tion, where the tube length L → 0 and three-phonon scat-
tering becomes negligible [10]. With initial values given by
RTA lifetimes, the self-consistent phonon lifetimes defined in
Eqs. (6) and (7) are determined iteratively until, according
to Eq. (1), convergence of phononic TC, κx = ∑

λ κx
λ , with

|κx,(k+1) − κx,(k)| < 10−4 Wm−1 K−1 is achieved.
MD simulations are carried out using the LAMMPS package

[49]. We apply periodic boundary conditions along the tube
axis in both NEMD and EMD simulations. Each simulation
is preceded by an equilibration in the isothermal-isobaric
ensemble (T = 300 K, P = 0) and by a subsequent equili-
bration in the microcanonical ensemble.

To calculate TC by use of NEMD, we follow the velocity
swapping protocol [40]. For tubes of varying size, we choose
the frequency of velocity swaps such that the temperature
difference between the hot and cold slabs remains within
�T < 50 K. Following Li et al. [43], we set ∇T = �T/L to
compute κx = (�Ekin/2A�t )/(�T/L), where �Ekin denotes
the accumulated energy of velocity swaps over a steady-state
simulation runtime �t , while the factor of 1

2 accounts for
the heat flow in two directions under the imposed periodic
boundary conditions along the tube. To address statistical
uncertainties in the NEMD approach, for each tube size, we
average TC values obtained from three independent simu-
lations, where each simulation is performed with a slightly

varied velocity swap frequency. More details on the NEMD
analysis are given in Sec. I of the Supplemental Material [50].

Conducting NMA in combination with EMD simulations,
we infer phonon lifetimes from atomic velocities in the fre-
quency domain by means of Eqs. (11) and (14). The standard
NMA protocol considers the full phonon spectrum which,
in the case of CNTs, requires to sample atomic velocities
with a period of Ts < 10 fs in order to resolve the highest
phonon frequencies which extend up to ωmax

λ /2π ≈ 51 THz.
At the same time, normal mode coordinates have to be cal-
culated and stored sequentially NQ times to obtain a discrete
Fourier transformation with frequency resolution �ω/2π =
1/(NQTs ), that allows to capture the slow dynamics of long-
wavelength acoustic phonons. Here, we restrict NMA ex-
clusively to acoustic modes with ωλ/2π < 2 THz, which
significantly reduces the required sampling frequency and
the overall number of normal mode coordinates to consider.
Specifically, while calculating normal mode coordinates on
the fly during EMD runtime, we set Ts = 256 fs to sample
NQ = 218 consecutive dumps giving rise to a frequency res-
olution of �ω/2π ≈ 15 MHz. Moreover, to reduce the noise
level, we average the frequency spectra obtained from 40 in-
dependent EMD simulations, where each simulation is made
independent by setting a different initial velocity seed. Finally,
to determine acoustic phonon lifetimes as per Eq. (14), we
initialize a nonlinear least-square-fitting routine with starting
parameters deduced from the height, position, and full width
at half-maximum of the most prominent peak in the frequency
spectrum.

Since atoms tend to sample larger regions of an anhar-
monic potential energy landscape as the lattice temperature
increases, a mode-dependent shift of phonon frequencies ob-
tained in the static limit (T = 0 K) occurs at finite temper-
atures. Corrective frequency shifts can be determined per-
turbatively [51] or, alternatively, by obtaining effective force
constants at finite temperature [52] which in turn enables the
calculation of temperature-dependent phonon frequencies and
eigenvectors. As input to our BTE calculations as well as to
the computation of normal mode coordinates within the EMD
framework, here we consider force constants exclusively in
the static limit. While some information about the significance
of anharmonic corrections can be inferred from NMA-derived
phonon frequencies at finite temperature, a thorough investi-
gation of the temperature dependence of phonon frequencies
and eigenvectors with possible effects on TC predictions is
left for future work.

IV. RESULTS AND DISCUSSION

A. Ballistic-to-diffusive transport transition from the
BTE and NEMD

In Fig. 1, we show the TC of CNTs as predicted by the
BTE and by the NEMD approach. Framework-specific trends
of TC with respect to the tube length are compared with each
other for CNTs of different diameters in Fig. 1(a). Inspecting
the same TC values obtained by each computational approach
separately, we present the BTE- and NEMD-derived tube-
length dependence of TC in Figs. 1(b) and 1(c), respectively.
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FIG. 1. Length dependence of TC as a function of tube diameter at T = 300 K arising from the BTE and NEMD approach. BTE results
of this work are obtained with N = 400 q-grid points. (a) Comparison of computational approaches with CNT diameter increasing from the
left to the right plot. Straight lines indicate TC values that result exclusively from phonon-boundary scattering as per the BTE framework.
Dashed and dashed-dotted lines highlight the role of quantum and classical heat capacity, respectively. (b) BTE results in log-linear scale with
reference data taken from Lindsay et al. [27]. (c) NEMD results in log-linear scale with reference data from Cao et al. [16] and from Sääskilahti
et al. [17].

For tubes of varying diameter, both calculations follow a
similar trend in the ballistic regime at the submicron scale, as
can be seen in Fig. 1(a). At this length scale, BTE predictions
are only weakly affected by intrinsic three-phonon scattering
and fall below corresponding TC values from NEMD. In
classical MD, equipartition under the harmonic lattice ap-
proximation implies a per-phonon heat capacity of cλ = kB/V
which overestimates the true (quantum) value that is enforced
in the BTE framework as per Eq. (1). This overprediction
manifests in the ballistic transport regime, where TC from
NEMD tends to be equally overpredicted.

As indicated by the dashed and dashed-dotted lines in
Fig. 1(a), turning off phonon-phonon interaction in the BTE
framework implies κ (L) = γ L, where the slope depends on
phonon dispersion branches and on the choice of classical or
quantum phonon heat capacity as γ = ∑

λ cλ|vλ|/2. Focusing
on the tube-diameter dependence of γ , we find that the use of
classical heat capacity leads to γ(4,4)/γ(10,10) ≈ 0.91, whereas
the ratio increases to γ(4,4)/γ(10,10) ≈ 0.99 if the quantum
heat capacity is assumed. To a certain degree, these numbers
might explain the fact that NEMD simulations in the ballistic
regime provide larger TC values for larger diameter tubes [see
Fig. 1(c)], which is not noticeable according to BTE-derived
(quantum) predictions in Fig. 1(b).

In the limit of long tubes, anharmonic phonon-phonon scat-
tering becomes increasingly important. Figure 1(b) shows that

BTE-derived TC values first rise approximately logarithmi-
cally with tube length but converge eventually toward a finite
value. Hence, an intrinsic value of TC and a diffusive transport
regime are suggested by an iterative solution of the BTE
under the inclusion of three-phonon scattering processes for
all tube diameters considered. As we will discuss later, even
though the convergence with L is straightforwardly addressed
in the BTE framework by setting (τ 0

bs,λ)−1 = 2|vλ|/L = 0, it
remains computationally challenging in the BTE approach to
pinpoint limiting TC values for L → ∞ which prove to be
vastly dominated by the contribution of long-wavelength
acoustic phonons. In NEMD, the maximally accessible sys-
tem size is restricted by the atom count and by an in-
crease of simulation time necessary to drive longer CNTs
into a nonequilibrium steady state. As can be seen in
Figs. 1(a) and 1(c), the steady increase of TC predictions
in the range up to L = 10 μm prevents one from mak-
ing definite statements as to the existence of an intrinsic
value of TC in the limit of long tubes. Focusing on the
tube-length dependence as a function of tube diameter in
Fig. 1(c), a power-law divergence in the case of the (4,4)
tube and a weaker, possibly logarithmic, divergence of the
(7,7) and (10,10) tubes might be deduced. Equally likely,
NEMD results could be described by a formula of the
form κ (L) = κ∞(1 + λeff/L)−1 which, in accordance with
BTE results, would imply a length saturation of TC with
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limiting value κ∞ and finite (effective) phonon mean-free
path λeff .

Comparing TC predictions of both frameworks in Fig. 1(a),
NEMD results are surpassed by BTE predictions for L �
1 μm irrespective of tube diameter. This crossover relates to
the distinct treatment of resistive phonon-phonon scattering
in either framework. The BTE approach truncates higher-
order resistive phonon-phonon scattering, whereas the NEMD
approach does not account for the Bose-Einstein statistics of
phonons entering into the calculation of anharmonic scatter-
ing rates as per Eq. (4). To scrutinize the role of phonon statis-
tics in thermal transport calculations, some studies [53–55]
employed classical statistics in the BTE framework by adopt-
ing phonon occupation numbers of the form nλ = kBT/h̄ωλ.
The high Debye temperature (∼2200 K) of CNTs, however,
makes such an approach problematic as it was shown by
Feng et al. [56] that anharmonic scattering rates as stated in
Eqs. (3)–(5) are well defined only under the assumption of
Bose-Einstein statistics.

B. Comparison with earlier BTE results

Previously, the BTE framework under the computation of
the full spectrum of anharmonic three-phonon scattering was
applied to CNTs by Lindsay et al. [14,27] and, more recently,
by Yue et al. [57]. The former authors investigated the length
[14] and diameter dependence [27] of TC based on force con-
stants derived from different parametrizations of the Tersoff
potential. While not taking into account phonon-boundary
scattering, Yue et al. [57] studied the diameter dependence
of TC in the diffusive regime using force constants from ab
initio calculations.

As indicated by the limiting behavior of the ballistic-to-
diffusive transition of heat transport in Fig. 1(b), even with
only three-phonon scattering included, our BTE results imply
a saturation of TC in tubes with length beyond the millimeter
scale. A similar regime of convergence was determined by
Lindsay et al. in [14] whose diameter-dependent predictions
for L = 3 μm in [27] based on the optimized Tersoff potential
fall into line with our results, as highlighted by the inset of
Fig. 1(b). In contrast to the calculations in [14], however,
we do not encounter a divergence of TC by solving Eq. (6)
iteratively in the diffusive regime, where L → ∞, which
would motivate an approximative inclusion of higher-order
phonon-phonon interaction as suggested by the earlier work
of Mingo et al. [10]. Likewise, no such divergence stemming
exclusively from anharmonic three-phonon scattering in the
diffusive regime was reported by Yue et al. [57].

C. Comparison with earlier NEMD results

Earlier NEMD simulations that also adopted the optimized
Tersoff potential to study the length dependence of TC for
CNTs of varying chiralities and for a (10,10) tube, were
conducted by Cao et al. [16] and by Sääskilahti et al. [17],
respectively. The former work considered tubes in the range
L � 2.4 μm up to which TC was found to increase with
tube diameter. In the diffusive transport regime, Cao et al.
proposed a power-law divergence of TC, κ = Lα , where the
exponent α ∼ 0.21 is independent of tube diameter. As shown

FIG. 2. Acoustic phonon branches in the low-frequency region
for armchair CNTs of varying diameter. The longitudinal (LA) and
twisting mode (TW) exhibit a linear dispersion, ω ∼ q, in the limit
q → 0, whereas the two degenerate flexural (FA) modes display
ω ∼ q2. Also shown is the radial breathing mode (RBM). LA and
RBM modes possess equivalent symmetry which causes a mode
hybridization and an avoided crossing of phonon branches.

in Fig. 1(c), we similarly detect that TC increases with di-
ameter in the range L � 5 μm, but that this trend might no
longer hold in larger simulations due to a more pronounced
increase of TC with length as observed for the (4,4) tube
in comparison to the larger diameter tubes of chirality (7,7)
and (10,10). The NEMD simulations of Sääskilahti et al.
[17] focused on a (10,10) tube with L � 4 μm. As indicated
by the inset of Fig. 1(c), our NEMD predictions for the
(10,10) tube compare satisfactorily with trends reported by the
aforementioned studies. Given the prohibitive computational
demands of longer tube NEMD simulations, Sääskilahti et al.
extrapolated the length dependence of TC based on a spec-
trally resolved phonon mean-free path obtained from NEMD
simulations. Here, the authors identified the importance of
low-frequency phonons whose dissipation rates in the limit
ω → 0 were found to determine whether TC saturates or
diverges with length. On a similar note, we focus on low-
frequency acoustic modes at the level of individual phonon
branches in the following.

D. Role of long-wavelength acoustic phonons in the
BTE framework

Motivated by the Klemens approximation of spectrally
resolved three-phonon scattering rates implying τ−1(ω) ∼ ω2

[35,58], previous studies [10,59,60] ascribed a diverging trend
of TC with tube length to low-frequency acoustic phonons
with low intrinsic attenuation. CNTs of any chirality give rise
to four distinct acoustic modes. For the CNTs considered in
Fig. 1, the dispersion of acoustic modes in the low-frequency
region is shown in Fig. 2 as determined by a harmonic lattice
calculation. The longitudinal (LA) and twisting (TW) modes
exhibit a linear dispersion, ω ∼ q, whereas the two degenerate
flexural modes follow a quadratic dependence, ω ∼ q2, for
small wave numbers.
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Within the BTE framework, the per-phonon TC con-
tribution of acoustic phonons in the low-frequency limit
h̄ω/kBT → 0 becomes κλ = 1/V (kBv2

x,λτλ). Considering the
continuum limit of Eq. (1), an integral over wave numbers de-
termines the per-branch TC contribution of acoustic phonons
κ j ∼ ∫

0 v2
x,λτλdq. For the linear LA and TW branches, the

phonon group velocity as given by the slope of each branch in
the limit q → 0 yields a constant vx,λ = c, so that the scaling
of TC can be estimated as

κLA/TW(L) ∼
∫

0

1

qa + c/L
dq ∼

{
L1−1/a, a �= 1
ln L, a = 1

(15)

in the limit L → ∞, where a power law of inverse anharmonic
lifetimes τ−1

λ ∼ qa in the presence of phonon-boundary scat-
tering τ−1

bs,λ ∼ vx,λ/L is assumed. A similar argument applies
to the TC contribution of FA modes whose group velocity
scales linearly with wave number vx,λ ∼ q, so that

κFA(L) ∼
∫

0

q2

qa + q/L
dq ∼

{
L1−2/(a−1), a �= 3
ln L, a = 3

(16)

in the limit L → ∞. Consequently, for CNTs, a divergence
of TC with tube length can be demonstrated by detecting a
power-law divergence of acoustic phonon lifetimes τλ ∼ q−a,
with exponent a � 1 or a � 3 in case of linear or quadratic
phonon dispersion, respectively.

Resulting from the full spectrum of anharmonic three-
phonon scattering in CNTs, we show BTE-derived intrinsic
lifetimes of acoustic phonons both under RTA and stemming
from an iterative solution of Eq. (6) in Fig. 3. Applying
an RTA, no conclusive evidence of a power law causing a
divergence of TC can be found. Decreasing the wave number
of LA and FA modes, lifetimes saturate and a decreasing
trend becomes apparent for sufficiently small wave numbers.
This turnaround manifests at a wave number that decreases
with increasing tube diameter. In comparison to LA and FA
mode lifetimes under RTA, TW mode lifetimes exhibit a
monotonic rise down to significantly smaller wave numbers.
Here, lifetimes of the (4,4) tube indicate a saturation, whereas
TW lifetimes in tubes of larger diameter might exhibit a sat-
uration that lies beyond the range of resolved wave numbers.
Attributed to an increase of normal three-phonon processes,
finite acoustic phonon lifetimes under RTA in the limit q → 0
were reported earlier for CNTs [14] and are consistent with
our results. Accounting for the nondissipative character of
normal scattering processes, Fig. 3 equally hints at a saturation
of iterated lifetimes in the limit q → 0 so that a finite TC
contribution of acoustic modes in the limit L → ∞ is implied.
It is noteworthy, however, that iterated lifetimes of FA modes
rise by approximately two orders of magnitude as compared to
the corresponding RTA prediction. We also find that iterated
lifetimes of FA modes are prone to numerical uncertainties
in the limit of small wave numbers. Specifically, in the case
of the (4,4) and (7,7) tubes, iterated lifetimes of the FA
mode obtained for different q-number discretizations, �q =
2π/Na, are found to vary drastically in the range 0 < q <

0.01π/a depending on the chosen value of N (see Fig. S4 of
the Supplemental Material [50]).

FIG. 3. Lifetimes of acoustic modes at T = 300 K as a function
of wave number arising from anharmonic three-phonon scattering in
the BTE framework for tubes of varying diameter. Lifetimes from an
RTA and from an iterative solution of the BTE are shown in the first
and second column, respectively. On the log-log scale, the critical
slope of a power law τ ∼ q−a inducing a divergent TC contribution
in the limit L → ∞ is indicated by the dashed lines.

E. Limiting TC values from the BTE and the wave number
discretization error

With anharmonic phonon lifetimes in hand, it is instruc-
tive to examine the individual mode-by-mode contributions
to TC in the long tube limit by setting (τ 0

bs,λ)−1 = 0. In
Fig. 4, we show per-branch TC contributions under RTA,
κ0

j = ∑
q cλv

2
x,λτ

0
3,λ, with respect to the employed wave-

number discretization. Since long-wavelength modes with
0 < q < 2π/Na are truncated by an equidistant discretization
of wave numbers, �q = 2π/Na, sufficiently large values
of N are required to capture the dominant TC contribution
stemming from long-wavelength acoustic phonons. Given the
relatively large number of phonon branches in CNTs, how-
ever, and a correspondingly large number of three-phonon
scattering processes, we find that BTE calculations beyond
N > 4000 become computationally impracticable. Hence, as
shown in Fig. 4, sufficiently dense q grids to achieve a
saturated TC contribution from TW modes are in fact not
obtained. Even though a tube-length saturation of TC is
evidenced by the scaling of acoustic phonon lifetimes, which
are resolved down to the smallest computable wave number
in Fig. 3, reported values of TC in the diffusive limit L → ∞
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FIG. 4. BTE predictions of phonon branch-resolved TC under
RTA at T = 300 K as a function of tube diameter and wave-
number grid resolution. Considering the long tube limit L → ∞,
the plot shows finite-size effects that result from a truncation of
long-wavelength modes with q < 2π/Na.

remain subject to wave-number discretization errors. More-
over, we show in Sec. II of the Supplemental Material [50] that
TC predictions in the diffusive limit derived from an iterative
solution of the BTE are not strictly increasing with q-grid
discretization factor N , which may hinder an extrapolation to
the wave-number continuum limit. Despite the uncertainties
related to TC predictions in the long tube limit, we expect
the general trends of TC with respect to both tube length and
diameter of CNTs reported in Fig. 1(b) to be robust.

F. NMA of long-wavelength acoustic phonons

Given BTE-derived trends of acoustic phonon lifetimes,
NMA in the framework of EMD allows to probe whether
these trends persist if higher-order phonon-phonon interaction
is present. In analogy to BTE calculations, MD simulations of
CNTs with N translational unit cells under periodic bound-
ary conditions equally imply a discretization of wave num-
bers �q = 2π/Na and a truncation of phonon modes with
wavelength � > Na. With the objective of detecting acoustic
phonons in a regime of desirably long wavelength by means of
NMA, we conduct EMD simulations of tubes with N = 400
unit cells. By further restricting the on-the-fly calculation
of acoustic normal mode coordinates during EMD runtime
to the eight smallest wave numbers, q = (2π/400a) m with
m = (1, . . . , 8), we achieve an acceptable tradeoff between
system size and simulation runtime as detailed in Sec. III.
Here, it is also worth mentioning that the LA mode can only
be identified as such in simulations of sufficiently long tubes
since a mode hybridization with the radial breathing mode
occurs at a diameter-dependent wave number (see Fig. 2).
For instance, enabling the LA mode of the (10,10) tube with
NLA distinct wave numbers requires the simulation of at least
N = 20 × NLA translational unit cells.

We provide our NMA raw data in the form of mode-
resolved frequency spectra including fit lines as per Eq. (14)
in Sec. III of the Supplemental Material [50]. Remarkably,
we find that frequency spectra corresponding to FA modes of
all considered diameters display no distinctive Lorentzian line
profile at the lower end of wave numbers, where harmonic
mode frequencies fall below ωλ/2π < 0.3 THz. Supporting

BTE-derived trends of FA phonon lifetimes in the limit q →
0, we attribute an absence of well-defined frequency peaks to
an increase of mode-specific dissipation rates stemming from
normal and umklapp scattering.

For acoustic modes belonging to the LA and TW branches,
NMA predictions of phonon lifetimes are shown in Fig. 5.
Here, we observe that the LA mode exhibits stronger atten-
uation in tubes of chirality (3,3) and (4,4) as compared to
the larger diameter (7,7) and (10,10) tubes. This observation
falls into line with BTE-derived LA lifetimes in Fig. 3 which
are found to reach larger values in tubes of larger diameter.
Fit lines τLA ∼ q−b with significantly smaller exponent b in
lower-diameter tubes might be ascribed to an onset of a satu-
ration in the limit q → 0 which occurs for larger values of q
in smaller diameter tubes as predicted by the BTE framework.
In the case of the TW branch, we detect a monotonic increase
of phonon lifetimes down to the smallest resolvable wave
number irrespective of tube diameter. Fit lines τTW ∼ q−b

indicate that exponents lie in the range from 0.80 to 1.16,
which conforms with an earlier NMA-derived prediction of
τTW ∼ q−1.1 based on a (10,10) tube [32]. Given the spread of
measured exponents in Fig. 5, we refrain from relating the
power-law exponent of NMA-derived TW lifetimes with a
possibly diameter-dependent power-law divergence of TC as
observed within NEMD simulations. Such an attempt would
be further obstructed by the fact that normal (nondissipative)
and umklapp (dissipative) scattering are treated on an equal
footing so that scattering rates from NMA tend to overesti-
mate the true energy dissipation rates which are of relevance
for heat conduction in NEMD.

G. Role of long-wavelength acoustic phonons
in the EMD framework

Considering predictions from NMA as a lower bound
to TC in the absence of phonon-boundary scattering, the
consequences of an observed power law τTW ∼ q−b extend-
ing beyond the picosecond range are profound. Taking the
(7,7) tube as an example and assuming that a power law
of TW mode lifetimes remains intact in tubes with N >

400 unit cells, Fig. 6 illustrates the hypothetical tube-length
dependence of TC predictions in the framework of EMD
resulting from TW modes with ever increasing wavelength.
Notably, even if lifetimes continue to follow a strict power
law with exponent b < 1, the simulation of sufficiently long
tubes reaching converged TC values would quickly become
impractical. In fact, since there is no additional attenuation of
phonon lifetimes caused by phonon-boundary scattering in the
EMD framework, a power-law divergence of acoustic phonon
lifetimes would lead to an even more pronounced tube-length
dependence of TC predictions in the EMD as compared to the
NEMD framework.

In light of q-grid saturated lifetimes in the framework of the
BTE, one might conclude that it is a breakdown of the power-
law dependence of lifetimes, τλ ∼ q−b, in the limit q → 0
which lies at the heart of the tube-length convergence of
phononic TC in CNTs. Such a breakdown would be consistent
with other calculations of TC in the framework of EMD which
did not find a significant variation of TC with simulated tube
length [18,61]. Our NMA data indicate that a breakdown
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FIG. 5. Phonon lifetimes of longitudinal (LA) and twisting (TW) modes resulting from normal mode analysis (NMA) in the limit of small
wave numbers. Plots are arranged in order of increasing diameter (from left to right). Underlying EMD simulations at T = 300 K comprise
N = 400 translational unit cells. Insets display the corresponding linear phonon dispersion with NMA-derived finite-temperature frequencies
shown by plus markers.

of the power-law divergence of acoustic phonons occurs for
quadratic FA modes in CNTs of all considered diameters.
In Fig. 5, LA modes point in this direction by signifying a
weakening of the lifetime divergence in tubes of chirality (3,3)
and (4,4). At the same time, however, a pronounced increase
of TW phonon lifetimes down to the smallest resolvable wave
number is confirmed by both NMA and BTE calculations. In

FIG. 6. Thermal conductivity contribution of the TW mode in the
EMD framework based on a power-law extrapolation of TW phonon
lifetimes τ = βq−b. The number of q-grid points N , as shown on the
horizontal axis, is proportional to the length of the simulated tube
in EMD. Absolute TC values are determined by adopting the cross-
sectional area of the (7,7) tube and by further assuming that τ = 1 ns
at q = 0.005 π/a.

order to capture the role of heat-carrying TW modes in CNTs,
Fig. 5 implies that simulated tubes in EMD should comprise
at least N � 400 unit cells. To avoid wave-number truncation
errors in EMD, an even higher number of simulated unit
cells, N � 4000, is suggested by BTE-derived TW lifetimes
in Fig. 3.

V. SUMMARY AND CONCLUSION

In this paper, we have addressed thermal transport in CNTs
and the conundrum of a domain-size-dependent TC in these
low-dimensional systems by comparing results from three
different atomic-level approaches to lattice heat transport. Our
framework-specific findings can be summarized as follows.

(1) The BTE approach under the inclusion of the full
spectrum of three-phonon scattering suggests a ballistic-to-
diffusive transition of phonon-mediated heat transport of the
form κ (L) = κ∞(1 + λeff/L)−1, where the diffusive limiting
value of TC, κ∞, and an effective phonon mean-free path,
λeff , are found to increase with decreasing tube diameter. The
convergence of TC with tube length is predicted to occur only
at macroscopic scales, requiring L � 1 mm. Even though it
proves to be numerically challenging to give accurate limiting
values of TC in the diffusive transport regime, the saturation
of TC itself is evidenced by acoustic phonon lifetimes τλ

whose scaling in the long-wavelength limit q → 0 signifies
a breakdown of the commonly assumed power law τλ ∼ q−a.

(2) NEMD simulations of lattice TC reveal a violation
of a quantum upper bound to TC in the ballistic transport
regime for CNTs of lengths L < 0.1 μm. Extending NEMD
simulations to micrometer-long tubes comprising ∼106 atoms,
a steady increase of TC is observed such that no definite
statement as to the existence of a diffusive transport regime
can be made. Regarding NEMD results in isolation, finite
length predictions of TC can be extrapolated beyond the
micrometer range using both converging and diverging trends.
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(3) NMA in the framework of EMD allows one to probe
BTE-derived trends of acoustic phonon lifetimes in the pres-
ence of higher-order phonon-phonon interaction. Supporting
our findings in the BTE framework, the following qualitative
trends can be inferred from NMA in the long-wavelength limit
q → 0. A breakdown of the power-law divergence of acoustic
FA mode lifetimes is indicated by the lack of distinctive
peaks in the corresponding polarization-resolved frequency
spectrum. For LA modes, a flattening of lifetimes is observed
for small diameter tubes. In accordance with BTE results and
irrespective of tube diameter, a pronounced increase of TW
mode lifetimes hints at the predominant role of TW modes in
CNT heat transport. Aiming at thermal transport properties of
CNTs, our NMA results further suggest that EMD simulations
should comprise N � 400 translational unit cells to not trun-
cate the transport contribution of long-wavelength TW modes.

In conclusion, our results clarify some of the conflict-
ing predictions in the literature on CNT thermal transport.
Moreover, our work may serve as a starting point for future
research on phonon-mediated heat transfer in CNTs and in
other quasi-one-dimensional materials. For example, applying

the BTE framework to two-dimensional graphene, the signif-
icance of four-phonon scattering at various temperatures [62]
as well as finite-temperature corrections to both harmonic and
anharmonic force constants [63] have already been considered
but remain to be explored in the case of CNTs.
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