
Comment on “Ultrahigh Convergent Thermal
Conductivity of Carbon Nanotubes from
Comprehensive Atomistic Modeling”

Barbalinardo et al. [1] determined the thermal conduc-
tivity κ of a pristine (10,0) carbon nanotube from a
numerical solution of the Boltzmann transport equation
(BTE). Invoking both quantum and classical phonon
statistics in the BTE, the authors reported absolute values
of κquan ¼ 9960 Wm−1K−1 and κclas ¼ 3190 Wm−1K−1

for infinitely long tubes at room temperature. The latter
prediction in particular was found to compare well with
predictions from molecular dynamics simulations (MD),
which led the authors to conclude that the two rather
different approaches, BTE and MD, draw a coherent
picture of heat transport in nanotubes. In the following,
we demonstrate that the BTE computation as detailed in
footnote 53 of Ref. [1] entails systematic errors that
emanate from the usage of numerical nonsymmetrized
force constants.
Low-frequency three-phonon scattering rates Γ (or,

equivalently, anharmonic lifetimes τ3ph ¼ 1=Γ) of acoustic
longitudinal (LA), flexural (FA), and twisting (TW) modes
represent an important metric pointing towards a conver-
gence or divergence of κ with tube length. As we showed
recently [2], irrespective of the choice of phonon statistics,
stress-free nanotubes under the harmonic lattice approxi-
mation give rise to power-law dependencies ΓLA ∼ jqj−1=2,
ΓFA ∼ q0, and ΓTW ∼ jqj1=2 in the limit of small wave
numbers jqj → 0, which provide a rigorous benchmark for
numerical calculations in the framework of the BTE.
Performing conductivity computations with the software
κALDo [3], which was also used in Ref. [1], we showcase
in Fig. 1 numerical data of acoustic phonon lifetimes under
the assumption of quantum statistics by treating third order
force constants (3rdFCs) at different levels of accuracy.
Here, it becomes evident that numerical 3rdFCs obtained
via finite differencing, as in Ref. [1], lead to an incorrect,
overly rapid decrease of lifetimes in the jqj → 0 limit. Such
behavior can be attributed to the fact that numerical 3rdFCs
do not perfectly obey translational and rotational sum rules,
which require a prior symmetrization of numerically
obtained 3rdFCs, as mentioned elsewhere [4,5]. Taking
as input analytical 3rdFCs determined via symbolic differ-
entiation, which fulfill sum rules by construction, lifetime
predictions in Fig. 1 are significantly improved.
In Fig. 2, we reproduce Fig. S4 of Ref. [1] to show how

the accuracy of 3rdFCs affects the solution of the BTE in
the infinite-size limit. Using nonsymmetrized numerical
3rdFCs, an apparent convergence of κ with the number of
q-grid points Nq is reached with limiting values that are
consistent with values given in Ref. [1] for Nq ¼ 200.
Performing calculations with analytical 3rdFCs, however,
the convergence behavior of κ changes drastically and
considerably larger predictions of κ are obtained. In solving
the BTE numerically, high memory requirements prevent

us from going beyondNq ¼ 400 q-grid points, such that no
definite statement regarding a possible saturation value of κ
can be made.
Contrary to the conclusion drawn in Ref. [1], thermal

transport in pristine macroscopically long nanotubes
remains an open theoretical problem. Unfortunately, as
the tube length goes beyond the 1-μm scale, the apparent
agreement between MD and BTE results in Ref. [1] should
be regarded as accidental and due to systematic errors in the
BTE calculation. Our Comment does not preclude the
possibility that the inclusion of additional physics in the
BTE formalism, such as finite temperature effects or higher
order phonon scattering, may reconcile the two approaches.
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FIG. 1. Anharmonic lifetimes of acoustic modes in a (10,0)
carbon nanotube at room temperature.

FIG. 2. Thermal conductivity of an infinite-length (10,0)
carbon nanotube at room temperature vs wave number grid
resolution Nq. The left (right) plot shows BTE predictions based
on quantum (classical) phonon statistics.
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