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Classical momentum gap for electron transport in vacuum
and consequences for space charge in thermionic converters
with a grid electrode
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Quantum mechanics tells us that the bound states of a potential well are quantized—a phenomenon

that is easily understandable based on wave properties and resonance. Here, the authors demonstrate

a classical mechanism for the formation of a momentum gap in the phase space of electrons traveling

as particles in a potential well in vacuum. This effect is caused by the reflection of electrons from at

least two potential maxima, which may, for instance, exist due to space-charge distribution in a triode

configuration. This gap plays a critical role in space-charge-mitigated electron transport in vacuum,

such as in a thermionic energy converter with a positively biased grid, where it is shown that the

current density can be increased by 1–3 orders of magnitude depending on the severity of space

charge in the absence of the grid. VC 2016 American Vacuum Society.

[http://dx.doi.org/10.1116/1.4958801]

I. INTRODUCTION

Energy gaps and quantization of momentum states are

commonly associated with quantum mechanical or wave

phenomena arising in nanoscale potential wells. Here, we

show that momentum gaps could arise in the phase space of

electrons traveling in classical potential wells (where the

dimensions are large enough that quantization due to the

wave nature of the electrons is negligible) due to purely clas-

sical effects.

Imagine that a stream of electrons with a wide range of

positive initial velocities is fired (from the left hand side) at

the potential (motive) profile depicted in Fig. 1(a) and is fully

collected once it reaches the right hand side. For the moment,

the interactions among the electrons are neglected; they will

be subsequently included in the more detailed discussion be-

low. On their path, electrons face two potential barriers in the

interelectrode region, and a potential well between those. If

the height of the second barrier is higher than that of the first

one, the reflection of the electrons from these two barriers

will lead to an interesting phenomenon, whereby certain mo-

menta will not be permissible in the potential well between

points 2 and 5. The emergence of this behavior can be under-

stood by considering that only electrons with initial kinetic

energies above the first barrier (point 2) can enter the well. At

any subsequent point in the well, these forward-moving elec-

trons will have velocities greater than a certain value v2(x),

which depends on the local potential. These constitute the

positive, semi-infinite shaded band on the corresponding ve-

locity distribution graph on Fig. 1(a). Of these electrons, those

with a kinetic energy below the second barrier will be

reflected and constitute the negative, finite shaded band on the

velocity distribution graph. This leads to a position-dependent

momentum gap centered around zero, as can be seen on the

distribution. In the regions between points 1 and 2, and be-

tween points 5 and 6, which are outside the potential well,

this gap disappears as the electrons, both forward-moving and

those reflected from the barriers, can have velocities all the

way down to zero. Similarly, in the region between points 6

and 7, electrons will have only forward momentum and there

will be no gap. Note that, if the first potential barrier (point 2)

is taller than the second one (point 6), this phenomenon will

not occur, since in this case only electrons with initial kinetic

energies higher than the tallest barrier will enter the potential

well and they will not be reflected from the second barrier.

It is interesting to observe that this momentum gap

emerges due to the existence of both forward-moving and

reflected electrons in the system. This is reminiscent of the

quantization of momentum in a quantum well, which could

be regarded as being the result of interference of forward-

travelling and backward-travelling waves. Nevertheless, the

two are fundamentally different effects.

II. THEORY AND MODEL

We now turn to a detailed analysis of the problem and

discuss the profound role of this momentum gap on electron

transport. The potential well portrayed in Fig. 1(a) can be

generated by the device configuration depicted in Fig. 1(b).

Electrons with various kinetic energies are released from a

source electrode (the emitter), pass through a potential well

and are collected by another electrode (the collector). The

potential well can be formed by the introduction of one or

several auxiliary electrodes, namely, grids [Fig. 1(b)]; the

motive may also be lowered by other means, such as the

presence of positive ions in the system or the use of negative

electron affinity materials.1 One way to create a distribution

of initial velocities at the emitter surface is the ejection of

electrons from a hot electrode due to thermionic emission. In

the steady state, such electrons assume a hemi-Maxwellian

(HM) distribution at the emitter if the motive of the point
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just outside the collector lies below that just outside the

emitter. In a more general sense, electrons assume an HM

distribution at the point of maximum motive in the interelec-

trode region.

Here, we show how these effects can be quantified by

solving the Vlasov equation. The electrodes are assumed to

be infinitely large in lateral dimensions, so that a one-

dimensional (1D) Vlasov equation can be used. (We expect

that the momentum gap will leave its mark in the 3D case as

well, although the analysis would be more complex in that

case.) The virtue of using the Vlasov equation is that the

electron–electron interactions are automatically included (al-

beit in a mean-field manner) when solved self-consistently

with the Poisson equation, leading to correct results in the

steady state.

In this case, the steady-state collisionless Vlasov equation

can be written as vxð@f ðx;vxÞ=@xÞ�ð1=mÞðdwðxÞ=dxÞ
ð@f ðx;vxÞ=@vxÞ¼0,2 where x denotes the direction normal to

the emitter’s surface, wðxÞ represents electron motive (in this

case, electric potential energy), vx is the electron velocity along

the direction of propagation, f ðx;vxÞ is the velocity distribution

function,3 and m is the electron mass. The solution to this

equation can assume the form of any arbitrary function of an

integral of motion,4 such as the energy of an electron,

ð1=2Þmv2þwðxÞ. The exact solution can be obtained by ap-

plying the proper boundary condition [Fig. 1(a)], i.e., electrons

having an HM distribution at the point of maximum motive,

ðxM;wMÞ, which can be written as

f xM; vð Þ ¼ 2 n xMð Þv�3
th exp �b

1

2
mv2 þ w xMð Þ � wM

� �� �

�H vxð Þ; (1)

where wðxMÞ � wM, vth is the average thermal velocity of

the HM distribution, ð2 p=mbÞ1=2
, H is the unit step function,

and b ¼ 1=kBTE, where kB is the Boltzmann constant and TE

is the temperature of the emitter. Depending on the actual

voltage and current values in the device, a total of eight pos-

sible motive configurations, leading to different distribution

functions, could arise in the presence of an emitter, a collec-

tor, and an ancillary electrode. A case that satisfies the two

aforementioned conditions required for the emergence of ve-

locity gaps is depicted in Fig. 1(a). Electrons on the right

hand side of the maximum motive (points 6–7) can only

move unidirectionally since they had enough kinetic energy

to surmount the motive barrier, with a minimum velocity

vmin ¼ 2c=bmð Þ
1
2, where c � bðwM � wðxÞÞ. Therefore, for

such points

f x; vð Þ ¼ 2 n xMð Þv�3
th exp �b

1

2
mv2 þ w xð Þ � wM

� �� �

�H vx � vminð Þ: (2)

After integration, this results in the electron density

nðxÞ ¼ nðxMÞ exp ðcÞð1� erfc1=2Þ.
In regions where electrons face a barrier (or barriers) only

in the forward direction, that is, between points 1 and 2, and

between points 5 and 6, they move bidirectionally since

those without sufficient energy to overcome all the barriers

are scattered and fully reverse their direction, resulting in

negative velocities. In such cases, we have

f x; vð Þ ¼ 2 n xMð Þv�3
th exp �b

1

2
mv2 þ w xð Þ � wM

� �� �

�H vx þ vminð Þ; (3)

and nðxÞ ¼ nðxMÞ exp ðcÞð1þ erfc1=2Þ. A special behavior

emerges at points between the two peaks wM;l and wM, with

motives smaller than wM;l (points 2–5). In such cases, the

first, smaller peak blocks the electrons with initial kinetic en-

ergies smaller than wM;l. This results in

FIG. 1. (Color online) (a) Potential (w) or motive profile of a potential well as a function of distance, x, and the resulting velocity distribution functions,

f ðx; vxÞ, in different regions. (b) Schematic of a vacuum device comprising an emitter, a collector, and an ancillary electrode (grid) that allows the transport of

electrons through the classical potential well. The potential well depicted in (a) is due to the external applied fields and the interaction between the electrons in

the interelectrode region. Note that the value of the momentum gap depends on position, with its maximum value occurring at the position of the grid (where

motive is at its minimum).
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f x; vð Þ ¼ 2 n xMð Þv�3
th exp �b

1

2
mv2 þ w xð Þ � wM

� �� �

� H vx þ vminð Þ �H vx þ v2ð Þ þH vx � v2ð Þ
� �

;

(4)

where v2 ¼ ð 2cl=bmÞ1=2
and cl � bðwM;l � wðxÞÞ, according

to Fig. 1(a). The velocity gap centered around zero is due to

the absence of electrons with initial kinetic energies between

0 and wM;l, whereas the absence of velocities less negative

than �vmin is because any electron with initial kinetic energy

higher than the tallest peak (wM;lÞ will not be reflected. This

leads to the distinct, negative velocity band seen on Fig. 1(a)

in the region between points 2 and 5. Integration of the dis-

tribution function results in

nðxÞ ¼ nðxMÞ exp ðcÞð1� 2 erfc1=2
l þ erfc1=2Þ: (5)

Electron densities at high values of c and cl were calculated

by using an asymptotic expansion of the error function5 or

numerically integrating the velocity distribution function us-

ing the method of global adaptive quadrature.6

It is noted that the momentum gaps depend on the posi-

tion and the width of the gap at each point in the region be-

tween the points 2 and 5 depends on the local value of the

motive. More specifically, points 2 and 5 are the boundary

points at which the momentum gaps start to emerge, and the

momentum gap has its maximum value at the position of the

grid (which has the most negative motive).

If the electrochemical potential of the collector is above

that of the emitter, this device operates in the power genera-

tion mode and is referred to as a thermionic energy converter

or thermoelectronic energy converter (TEC). TECs are the

perfect vehicle to investigate the velocity/momentum gap

phenomenon presented above due to three reasons. First, the

thermal emission of the electrons from the hot electrodes fur-

nishes the wide range of initial kinetic energies needed.

Second, these devices generally operate at low biases, making

the space-charge effect prominent; since the collector is at a

higher electrochemical potential, depending on the workfunc-

tions and the operating conditions, it is more likely to be in

retarding mode (where the point just outside the collector has

a higher motive than the point just outside the emitter).

Indeed, a reason that this effect has not been reported in the

past could be that most vacuum electronic devices normally

operate deep in the accelerating mode. Last, it is expected that

the usage of a grid can significantly improve the current den-

sity of these devices,7,8 and the observed velocity/momentum

gap can play a fundamental role in this space-charge mitiga-

tion strategy. TECs are gaining popularity, partly because

nanotechnology has opened up new avenues for addressing

some of their long-standing challenges.1,8–12 A survey of

some of the advances in thermionic conversion enabled by

nanotechnology is given in Ref. 13. As a case study, we now

apply the electron velocity distributions discussed above to

the steady state behavior of a TEC comprising a grid and

demonstrate that the application of sufficiently positive grid

biases can significantly improve its current density.

The thermionic emission current from the electrodes is

evaluated from the Richardson-Dushman equation, Jsat

¼AT2
E expð�/E=kBTÞ, where Jsat is the saturation current

density, / is the workfunction, and A¼1:202�106 Am�2 K�2

is the Richardson constant.14 This equation is used as the

boundary condition to the Vlasov equation as the incident flux

of forward-going electrons at the emitter. It is assumed that

electrons start off from the emitter and are fully absorbed upon

arrival at the collector.

The electron densities obtained from the Vlasov equation

are substituted in the Poisson equation, ðd2wðxÞ=dx2Þ
¼�ðe2=�0ÞnðxÞ, subject to the boundary conditions wð0Þ¼0,

wðxGÞ ¼eVG, and wðdÞ¼eVint; where e is the electron charge,

�0 is the permittivity of vacuum, and Vint is the internal motive

difference between collector and emitter. When the workfunc-

tions are equal, the magnitude of the internal motive difference

is equal to the difference between the electrochemical poten-

tials of the emitter and collector, VLoad. However, in the more

general case, where the workfunctions are not equal, the value

of the internal voltage difference is equal to VLoad

�ð/E�/CÞ=e. It is assumed that the grid’s length scale is fin-

er than the Debye length of the electron gas (typically 10�
500lm in TECs). Under this condition, the plane of the grid

(including the holes) can be considered to be an equipotential

surface and thus the motive at the gate position can be set

equal to eVG, where VG is the grid bias with respect to the

emitter. The Poisson equation is solved recursively with the

Vlasov equation using the strategy portrayed in Ref. 15, where

we have also presented an algorithm to ensure convergence.

III. RESULTS AND DISCUSSION

The motive and electron density distributions of a TEC

are depicted in Fig. 2 (see the figure caption for the device

parameters used). The position of the grid is chosen such

that the tallest motive peak occurs after the grid, in accor-

dance with the conditions necessary to generate the momen-

tum gaps.

The velocity gaps are indispensable to the problem; in

their absence, the system becomes unstable and therefore not

physically realizable. This can be understood by the follow-

ing argument. For this transport system to be physically pos-

sible, there needs to be a negative feedback mechanism

between the concentration of the electrons and the motive

profile that is generated due to the presence of these elec-

trons and the external potentials. This requirement is rooted

in the fact that electrons are only ejected from the emitter,

and henceforth, their concentration needs to decrease in the

region between point 2 and the grid (Fig. 2); otherwise, they

are being accumulated inside the well. However, this cannot

occur in steady state. This argument is supported mathemati-

cally by noting that the electron density function in the re-

gion between point 2 and the grid [Eq. (5)] in Fig. 1(a) is a

decreasing function of distance, except for when the value of

cl plunges below 0:4769. However, this does not lead to in-

stability since the local barrier height on the left will increase

due to accumulation of charges in the well, which will in

turn increase the value of cl, rendering the system stable.
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The motive and the electron density versus distance are

depicted in Figs. 3(a) and 3(b) for several applied grid voltages

for a TEC with the parameters given in the figure caption; the

maximum motive as a function of the grid voltage is plotted in

Fig. 3(c). It is interesting to note that increasing the grid volt-

age impacts the device performance in two opposing ways: the

overall electron density is increased by increasing the grid

voltage according to Figs. 2 and 3(b), since more electrons are

allowed to be in the interelectrode region compared to the case

where no grid is present. This is due to the presence of higher

potential energy differences, leading to a larger spectrum of ki-

netic energies and velocities. Therefore, the higher number of

electrons in the interelectrode region increases the space

charge potential. The other effect is that the motive boundary

(on the grid) is shifted downward due to the negative motive.

Mathematically, the first effect is due to the Vlasov equation,

whereas the second one is due to the boundary conditions

to the Poisson equation. The interplay between these factors

leads to an overall reduction in the maximum motive [Figs. 2

and 3(c)] and hence an increase in the current density.

The outcome is that the solution to the Poisson equation has

a smaller peak compared with the case where no grid is present

FIG. 2. (Color online) Motive profile and the electron density of a TEC with

/E ¼ /C ¼ 2:5 eV, TE ¼ 2200 K, d ¼ 100 lm , xG ¼ 10 lm, and V ¼ 0 V.

Also shown are the potential profile and the electron density for the same

TEC, but in the absence of a grid. As detailed in the main text, the overall

effect is a total reduction in the maximum motive barrier.

FIG. 3. (Color online) (a) Motive as a function of position for a TEC with /E ¼ /C ¼ 4:5 eV, TE ¼ 3000 K, d ¼ 1 mm, and xG ¼ 500 lm for different values of

the grid bias. (b) The electron density as a function of position for different gate biases. (c) The maximum motive, wM , as a function of the grid bias. The computed

data can be fit by a double exponential function, wM ¼ a exp ðb VGÞ þ c exp ðd VGÞ; where a ¼ 0:03798; b ¼ �3:983 ; c ¼ 1:075 , and d ¼ �0:2363 with

RMSE ¼ 0:01705.
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[Figs. 2, 3(a), and 3(c)]. The presence of these two effects can

be demonstrated in Fig. 3(c), where it is noted that a single ex-

ponential curve cannot capture the trend of changes of wM,

and that a biexponential function is necessary for this purpose.

It is also noted from Fig. 3(c) that even setting VG ¼ 0 is more

favorable than not having a gate at all.

The developed model can be used to calculate the value

of the grid bias necessary to obtain a certain amount of cur-

rent density or motive barrier. The results are depicted in

Fig. 4 for a TEC (see the device parameters in the figure cap-

tion) at different values of d. It is observed that at smaller

values of d—applicable to most emerging TECs—smaller

values of grid bias, on the order of several volts, can dimin-

ish the space charge effect and improve the output power

density by an order of magnitude. At higher distances, a

higher grid bias is needed according to Fig. 4 in order to

eliminate the space charge effect, since more electrons in-

habit the interelectrode region.

Reducing the workfunction of the emitter results in an ex-

ponential increase in current, leading to the amplification of

the space charge. Increasing the emitter temperature also has a

similar effect. Therefore, smaller workfunctions with a smaller

emitter temperature were used to obtain the results shown in

Fig. 4 compared to Fig. 3. Similarly, in order to demonstrate

the influence of the momentum gap on the operation of the

TEC in Fig. 2, a higher temperature than that for Fig. 4 was

chosen, so as to compound the space charge effect.

The results presented so far do not take into account possi-

ble electron loss to the grid. This loss can be easily included

in the model by multiplying the current density at each itera-

tion level by ð1� lÞ, where l represents the loss fraction of

the grid. This reduced current density leads to a lower nðxMÞ
and therefore lower space charge at the expense of power loss

through the grid. If a bias of 2 V is applied to the grid, the

geometric loss corresponds to �4% loss in the total output

power if space charge is completely eliminated. On the other

hand, if higher voltages are applied, it is necessary to reduce

the grid loss further to improve the overall efficiency. Meir

et al. reported that, by applying a longitudinal magnetic field,

the electron transparency of a grid can be enhanced to its geo-

metrical transparency (which could be as high as 98%);8 by

using nanomaterials such as graphene, it is also possible to

achieve high transparency.16–19 The presented model also

neglects the electronic structure of the grid metal and its im-

pact on the energy dependence of the absorption/reflection/

transmission coefficients of the impinging electrons; for cases

where this might become important, such as in atomically

thin grids, the model needs to be modified to incorporate this

energy-dependent behavior.

IV. SUMMARY

We showed that momentum gaps could arise in the

phase-space of electrons traveling under certain conditions

in vacuum. The transport model for this phenomenon was

developed and employed to analyze the performance of

thermionic energy converters in the presence of grids. It was

further demonstrated that the application of positive voltages

to the grid can significantly mitigate the space charge effect.
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FIG. 4. (Color online) Maximum motive (descending curves) and the current

density (ascending curves) as a function of the grid bias for different values of d.

The current densities in the absence of the grid are plotted as dashed lines. The

parameters of the TEC are /E ¼ /C ¼ 2:5 eV, TE ¼ 1800 K, and xG ¼ d=2.
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