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Research in thermionics has been reinvigorated recently by the advent of nanotechnology and

nanomaterials. Thermionic energy convertors are commonly modelled using the Poisson-Vlasov

system of equations under various limitations and approximations. With the ever-growing demands

of emergent thermionic devices, more comprehensive approaches are needed in order to be able

to treat a broader range of device configurations and operational parameters. Here, we propose a

self-consistent approach that, by iterating between the Poisson and Vlasov equations, does not rely

on the existence of an analytical solution to the latter. Specifically, we present a particle-tracing

implementation of this method for solving the system numerically in an efficient manner. In

the case where an analytical solution does exist, we present an asymptotic expansion of the

ill-behaving functions that arise; this approach improves the effectiveness of the method in the

deep space-charge mode. We also demonstrate the applicability of this approach in the presence of

back-emission. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940673]

INTRODUCTION

Thermionic energy convertors (TECs) offer promising

features such as an exponential dependence of current den-

sity on temperature, high power density and current density,

significant simplicity compared to mechanical heat engines,

and, in the case of solar energy conversion, the ability to har-

ness a broad spectral range of the incident light. These prop-

erties make TECs highly appealing for inexpensive and

clean energy applications. Typically, a TEC comprises two

electrodes (emitter and collector) isolated by a vacuum gap

(Fig. 1(a)). Electrons in the high-energy Fermi tail in the hot-

ter electrode (emitter) have sufficient kinetic energy to cir-

cumvent the energy barrier; some of them are emitted into

the vacuum gap, traverse the inter-electrode distance, and

are condensed on the collector. The electrons subsequently

find their way back to the emitter through an external load.

The difference between the electrochemical potentials of the

electrodes determines the voltage generated across the load.

TECs have been studied for a century for direct conver-

sion of heat to electricity. However, a new wave of interest

has recently emerged due to the advances in micro- and

nanofabrication and the properties of nanomaterials, which

have opened up new opportunities for addressing the chal-

lenges of these devices.1–6 A survey of some of the advances

in thermionic conversion enabled by nanotechnology is

given in Ref. 7. (Here, we note that, as pointed out in Ref. 5,

given that these devices are concerned with electron emis-

sion and not ion emission, they may more appropriately be

called thermoelectronic energy convertors, for which again

the same acronym, TEC, can be used.)

A method commonly used for the analysis of TECs was

developed several decades ago by Langmuir, Hatsopoulos,

and Gyftopoulos.8,9 It involves solving the Poisson-Vlasov

system of equations in the space-charge limited (SCL)

regime, assuming the electrons in the inter-electrode space

follow the dynamics of a steady-state collisionless gas (albeit

having Coulomb interactions in an average manner) with a

hemi-Maxwellian (HM) velocity distribution;8,10 this

approach results in an analytical solution in the form of an

integral, which can then be calculated numerically.

In this method, the solutions only exist when the motive

reaches a maximum in the inter-electrode distance. It is

because analytical solutions, in a closed form, arise when the

boundary conditions are enforced such that the derivative of

the motive is zero at one point in the inter-electrode region.

This condition significantly narrows down the applicability

of the analytical solution in the modes of operation that are

not space-charge limited. This effect is most palpable at the

boundaries between the retarding mode and the space-charge

mode, where the highest errors can occur if a combination of

precise numerical integration and an iterative strategy are

not employed.11

This method also has a limited range of applicability in the

presence of strong space charge and suffers from high splicing

errors due to employment of different equations for different

regimes of operation. These limitations were overcome in our

earlier works by solving the equations for a wider range of

parameters and following a more robust algorithm.11–13

Smith et al.4,14 developed the theory of TECs with a

negative electron affinity (NEA) emitter using an approach

similar to that of Langmuir and Hatsopoulos, and proposed a

method to calculate the limits of the space-charge regime.

Smith also proposed that the space-charge effect can be miti-

gated in the case of a TEC incorporating an NEA material as

the anode.16 Lee et al. have modeled the behavior of TECs

with very small gaps where near-field heat transfer becomes

important and have observed that the optimum gap roughly

corresponds to the characteristic wavelength of the emitter’s

thermal radiation.17
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Another approach was adopted by Meir et al.,5,15 which

involves solving the differential equation that is obtained by

replacing the analytical solution to the Vlasov equation,

inside the Poisson equation, and employing a non-linear self-

consistent solver. This method can treat all regimes of opera-

tion and overcome the splicing errors; however, the solution

is limited to the cases where an analytical solution to the

Vlasov equation exists, e.g., when the TEC comprises two

infinitely large and uniformly heated flat electrodes.

Here, we develop a strategy that consists of iterating

between the two equations and can be used even for cases

where the Vlasov equation does not have an analytical solu-

tion. As a way of efficiently obtaining a numerical solution,

we present a particle tracing approach to calculate the elec-

tron density. Although we present the 1-dimensional case,

this strategy can be expanded to include higher dimensions

where an analytical solution to the Vlasov equation does not

exist. This is an important issue, since in the absence of

an analytical solution, the Vlasov equation lives in the

6-dimensional phase space, and finding a numerical solution

to it can be extremely challenging and time-consuming. Our

approach can also incorporate the analytical solution of the

Vlasov equation; the applicability of the model in this case is

significantly improved by employing an asymptotic expan-

sion to calculate the ill-behaving functions involved in the

solution of the Vlasov equation.

Dugan19 employed Langmuir’s theory of space charge

in the presence of back-emission using a method similar to

that of Hatsopoulos, i.e., starting with a current density and

calculating the voltage that corresponds to this current. He

developed an iterative approach, since the total current den-

sity depends on the unknown in the problem, i.e., the applied

voltage. This approach naturally faces some of the chal-

lenges associated with Hatsopoulos’ method, described

above. It is indispensable to reliably include the presence of

back-emission in the analysis of the emergent thermionic

devices; by employing nanotechnology, ever smaller inter-

electrode distances are achievable, which could lead to a

higher temperature of the collector. In this paper, after

describing the model, we develop the physics of the TEC in

the presence of back-emission and present the output

current-voltage characteristics.

The model presented here can be used to evaluate the

output characteristics of TECs for a wide range of parame-

ters, unless quantum tunneling (occurring at nanoscale

inter-electrode distances) or relativistic effects (occurring at

exceedingly high biases that are not relevant in thermionic

convertors) are prevalent. We intentionally emphasize cases

where the space charge effect is prominent, in order to dem-

onstrate the applicability of the approach, and these situa-

tions naturally lead to low energy conversion efficiencies;

however, the model is equally applicable to low-space-

charge scenarios. The calculation of the conversion effi-

ciency would involve, in addition to the electron transport

characteristics obtained using the proposed approach, other

considerations such as the heating mechanism of the emitter

and power delivery to the external load, with the relevant

parameters such as thermal conductivity, resistivity, and

emissivity. Overall device modeling for the evaluation of

efficiency has been discussed in previous works.5,8,18

THEORY AND MODEL

The thermionic emission current from the electrodes

is calculated from the Richrdson-Dushman equation,

Jsat ¼ A T2 exp ð�/=kBTÞ, where Jsat is the saturation cur-

rent density, T represents the temperature of either the emit-

ter or the collector, kB is the Boltzmann constant, / is the

workfunction, and A ¼ 1:202� 106 A m�2 K�2 is the

Richardson-Dushman constant.20 (Throughout the paper, we

will use subscripts E and C to refer to the parameters of the

emitter and collector, respectively, such as temperature and

workfunction.) It is assumed that electrons originate from

the emitter or the collector and are fully absorbed once they

arrive at the opposite electrode. In the next section (Self-

consistent solution in the absence of back-emission), we de-

velop the model in the absence of back-emission and show

that the results are in agreement with our improved-and-

extended-Langmuir (IEL) solution reported earlier.11 In a

subsequent section (Self-consistent solution in the presence

of back-emission), we use this model to analyze a TEC with

substantial back-emission from its collector.

Self-consistent solution in the absence
of back-emission

In a 1-D case and in the absence of magnetic fields, the

steady-state collisionless Vlasov equation can be written as21

vx
@f x; vxð Þ
@x � 1

m
d w xð Þ

d x

@f x; vxð Þ
@vx

¼ 0, where x denotes the direction

normal to the emitter’s surface, wðxÞ represents electron

motive (in this case, electric potential energy), vx is the

FIG. 1. (a) Schematic diagram of a

TEC. The device comprises a hot emit-

ter and a collector, separated through a

vacuum gap. The electrodes are con-

nected externally through a load (rep-

resented by a bulb). (b) The motive

diagram and the corresponding veloc-

ity distributions in the space-charge

limited mode of operation.
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velocity of the electron along the direction of propagation,

and f ðx; vxÞ is the velocity distribution function.22 The gen-

eral solution to this equation can be written as the sum of

functions of the form ai exp �bi wþ 1
2

m v2
� �� �

, where v is

the magnitude of the velocity vector (speed) of the elec-

trons.9 Langmuir9 obtained the constants ai and bi by assum-

ing that the electron velocity distribution adopts an HM form

at the point of the maximum motive ðxM; wMÞ , namely,

f xM; vð Þ ¼ 2 n xMð Þ m
2 pkB TE

� �3
2 exp � mv2

2 kBTE

� �
�H vxð Þ, where H

represents the unit step function, and nðxMÞ is the electron

density at x ¼ xM (point 3 in Fig. 1(b)). The motivation

behind this assumption is that electrons originate from one

electrode (emitter), and therefore those with kinetic energies

lower than wM cannot surmount the maximum motive.10 In

the next section (Self-consistent solution in the presence of

back-emission), we will provide arguments on the validity of

this assumption in the case of the emergent TECs and also in

the presence of back-emission.

The maximum motive, wM, coincides with the points just

outside the emitter or collector at the start of the flowchart in

Fig. 2, in positive and negative applied voltages, respectively.

However, the maximum motive can move inside the inter-

electrode region in subsequent iterations. In that case, the de-

vice is operating in the SCL mode. If the maximum motive

coincides with the points just outside the emitter or collector at

the end of the loop, the device is operating in the saturation or

retarding modes, respectively. As we will show, our strategy

can be used in these modes as well.

The velocity distribution function, f ðx; vÞ; can be calcu-

lated by considering the ranges of applicable velocities along

different points in the inter-electrode region. Assuming that

the emitter is positioned at x ¼ 0 and the collector at x ¼ d,

the electrons lying on the left side of xM (points 1–3 in Fig.

1(b)) can move bidirectionally, whereas electrons to the right

of xM (points 3–5 in Fig. 1(b)) naturally move only to the

right. This behavior is again due to the fact that electrons

originate from the emitter, and the ones that possess

sufficient kinetic energy to overcome the wM barrier, only

move to the right at x > xM. Therefore, the minimum veloc-

ity, vx;min, is negative for x < xM and equal to �vx;min ¼

� 2
wM�w xð Þ

m

� �1
2

; corresponding to electrons that had a kinetic

energy to barely make it to the peak, but not enough to over-

come the barrier. By the same token, the minimum velocity,

vx;min, is positive for x > xM (since electrons only move to

the right) and equal to vx;min ¼ 2
wM�w xð Þ

m

� �1
2

. Therefore, the

velocity distribution function, f ðx; vxÞ, can be formulated as

f x;vð Þ¼ 2n xMð Þ
m

2pkB TE

� 	3
2

exp
wM�w xð Þ

kB TE
� mv2

2kBTE

� 	

�H vx6 vxð Þmin

� �
; (1)

for x � xM (þ sign) and x > xM (� sign).10

The electron density, nðxÞ, is calculated by integration

of the velocity distribution function as nðxÞ ¼
Ð1
�1
Ð1
�1
Ð1
�1

f ðx; vÞ dvx dvy dvz, resulting in

nðxÞ ¼ nðxMÞ exp ðcEÞ
1� erfðcE

1=2Þ;
1þ erfðcE

1=2 Þ;
x > xM

x � xM;

(
(2)

where cE is the dimensionless motive for the electrons origi-

nating from the emitter defined as ðwM � wðxÞÞ=kBTE, and

erf is the error function.10

Equation (2) is subsequently substituted into Poisson’s

equation to yield

d2w xð Þ
dx2

¼ � e2

�0

n xMð Þexp cEð Þ
1� erf cE

1=2
� �

;

1þ erf cE
1=2

� �
;

x > xM

x � xM;

(

(3)

subject to the boundary conditions, wð0Þ ¼ 0 and wðdÞ ¼ e V,

where e is the electron’s charge (negative value), �0 is the per-

mittivity of vacuum, and V is the voltage difference between

FIG. 2. Flowchart representation of the

proposed self-consistent approach to

calculate the output characteristics of

TECs. Initially, the density of the elec-

trons is assumed to be zero, and there-

fore only the Laplace equation is

solved. In later iterations, the Poisson

and Vlasov equations, or alternatively,

Poisson and the particle tracing equa-

tions are self-consistently solved to

reach convergence.
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the collector and the emitter in the case that the workfunctions

of the emitter and the collector are equal. In the more general

case where the workfunctions are not equal, the electric poten-

tial difference between the points just outside the collector and

the emitter is equal to V � ð/E � /CÞ=e, where eV is the dif-

ference between the Fermi levels of the collector and the emit-

ter (due to the applied voltage).

Equation (3) can be solved at each iteration by noting

that wðxÞ can be written as the sum of two functions,

wlðxÞ þ wdpðxÞ, where wlðxÞ represents the solution to the

Laplace equation,
d2wl xð Þ

dx2 ¼ 0, with wlð0Þ ¼ 0 and wlðdÞ ¼
e V boundary conditions; wdpðxÞ is the solution to the

Poisson equation with the homogeneous Dirichlet boundary

conditions, namely, Equation (3) subject to

wdpð0Þ ¼ wdpðdÞ ¼ 0, as the boundary conditions. In this 1-

D example, wl xð Þ ¼ x
d V. wdpðxÞ is solved numerically by

means of spatial discretization of the Laplacian operator

d2

dx2
� 1

Dx2

�2 1 0 0 0

1 �2 1 0 0

0 1 . .
. . .

.
0

0 0 . .
.

�2 1

0 0 0 1 �2

2
6666666664

3
7777777775

(4)

and taking the inverse of the resulting sparse matrix. Dx rep-

resents the discretization distance. Since the sampling points

remain the same within the entire calculations for a given set

of variables, the inverse of the Laplacian matrix can be cal-

culated only once to save on computation cost. (Meir

et al.5,15 arrived at an equivalent form of Equation (3) and

used a non-linear solver to calculate the motive in the inter-

electrode region.) An important numerical difficulty in solv-

ing Equation (3) can arise at higher values of cE at x > xM

where the error function approaches 1. This issue can be

bypassed by using an asymptotic expansion of the error func-

tion23 and substituting the resulting function in Equation (3):

exp cEð Þ 1� erf cE
1=2

� �� �
¼ 1ffiffiffi

p
p cE

�1=2 � 1

2
cE
�3

2 þ 3

4
cE
�5

2 � � � �
�

þ �1ð Þnþ1
1� 3� � � � 2n� 3ð ÞcE

n�1=2

2n�1
þ � � �

!
: (5)

Using the first 6 terms in Equation (5) leads to numerical

errors less than 10�4 % for values of cE > 20. After

Poisson’s equation is solved, the electric potential is updated

as a mixture of the previous solution and the new solution to

avoid large jumps in the potential, i.e., wdp;nðxÞ ¼ ð1� aÞ
wdp;n�1ðxÞ þ awdpðxÞ , where a is the mixing ratio, and the

subscript n represents the iteration number. This step is nec-

essary due to the non-linearity of Equation (3), leading to a

strong dependence of electron density on the potential pro-

file. The mixing ratio needs to be chosen small enough so

that large oscillations do not occur in smaller values of n,

where the solutions of the Poisson and Vlasov equations are

strongly decoupled. Values of a � 0:1 were found to be suit-

able for the problems studied in this paper.

The current density can be equal to the maximum satu-

ration current density, Jsat, determined by the Richardson-

Dushman equation, if electrons do not face a potential barrier

in the inter-electrode distance, i.e., when xM ¼ 0. Therefore,

J ¼ Jsat exp �cE x ¼ 0ð Þ
� �

¼ Jsat exp � wM

kB TE

� �
, which can be

used to calculate the current at each iteration. The current

density at each iteration is equal to the integral of the product

of the x component of the velocity and the velocity distribu-

tion function

J ¼ e

ð1
�1

ð1
�1

ð1
�1

vxf x; vð Þ dvx dvy dvz ¼ e n xMð Þ
2 kB TE

pm

� 	1=2

:

(6)

The result in Equation (6) was calculated using Equation (1).

This value of current density is expectedly independent of

position. The electron density at the point of maximum

motive, nðxMÞ, can be derived from this result.

The new motive is subsequently incorporated into the

Vlasov equation, and the loop is repeated until the motive

converges. The convergence criterion is set such that the

cumulative root mean square change in motive,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
wdp xið Þ�wdp;n�1 xið Þð Þ2P

wdp;n�1 xið Þð Þ2

s
; is less than 1 %.

Figure 3 presents the evolution of the motive as a func-

tion of the iteration number in the simulation. (The parame-

ters of the TEC under study are /E ¼ /C ¼ 4:5 eV;
TE ¼ 2000 K, and d ¼ 10 mm.) The convergence can usually

be reached at iteration numbers less than 100. The entire

simulation time on a regular modern PC is around 1–3 s

when this model is implemented in MATLAB. The n ¼ 1

FIG. 3. The evolution of the motive vs. distance as the loop in Fig. 2 is

repeated. n represents the iteration number. The n ¼ 1 case corresponds to

the Laplace equation solution. This initial attempt underestimates the space-

charge and therefore leads to high electron density. The exaggerated density

results in higher space-charge effect (n ¼ 6), which in turn reduces the elec-

tron density in subsequent iterations. The parameters of the TEC under study

are /E ¼ /C ¼ 4:5 eV; TE ¼ 2000 K, and d ¼ 10 mm.
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case corresponds to the Laplace equation’s solution.

Initially, the space-charge motive is underestimated and

therefore leads to high electron density. The exaggerated

density causes higher motive due to space charge (n ¼ 6),

which in turn reduces the electron density in the subsequent

iterations until convergence.

Particle tracing approach to bypass the analytical
solution to the Vlasov equation

Here, we show that particle tracing can be used to bypass

the analytical solution of the Vlasov equation. A finite differ-

ence time-domain (FDTD) particle-in-cell (PIC) approach to

obtaining the output characteristics of thermionic convertors

has been adopted by Lo et al. using a 1-dimensional object

oriented particle tracing software package called OOPD1.24

This method can be computationally expensive, since the

electrons are followed in real time and their influence on each

other is accounted for by solving the Poisson equation. Since

we are interested in the steady state response of the system,

we propose a particle tracing approach that can mimic the

solving of the Vlasov equation and integration of the distribu-

tion function in an efficient manner. Instead of solving the

Poisson equation at each time step as the electrons propagate,

we solve the Poisson equation at the end of each iteration

where the equilibrium electron density for that particular

motive profile has been reached.

A flux of 107 electrons is released from the emitter at

regular intervals, over a total duration of 5 ls (roughly 1000

times larger than the time-of-flight of the electron with an

average velocity corresponding to 2000 K). The initial veloc-

ities of these electrons follow an HM distribution. The effec-

tive area of emission is adjusted so that the flux of the

forward-moving electrons at the emitter matches the incident

thermionic flux, Jsat=e . Using a higher number of incident

electrons leads to a higher number of electrons in the inter-

electrode region, although the overall electron density

remains constant. These electrons are followed on their tra-

jectory to the collector through the potential landscape pro-

duced in a previous step as the solution of the Poisson

equation. The acting force at each particle position is calcu-

lated at a grid point and interpolated to the current position

of the particle. The particle is propagated using a leapfrog

algorithm:25 xi ¼ xi�1 þ vi Dtþ 1
2

F xi�1ð Þ
m Dt2 and vi ¼ vi�1

þ 1
2

F xi�1ð ÞþF xið Þð Þ
m Dt, where xi, vi, and FðxiÞ are the position,

velocity, and the acting force on the electron, respectively, at

step i, and Dt is the time interval. Each electron “feels” the

presence of the other electrons only though the Poisson equa-

tion in a mean field fashion. The electrons that are pushed

back to the emitter or reach the collector are removed from

the system, and their numbers are recorded (along with their

arrival time) and used subsequently to calculate the current

density. If the final position of an electron lies between two

grid points, its charge is distributed between its nearest

neighbors using a linear weighting function. The electron

density obtained by coupling the particle tracing approach

and the Poisson equation were compared with that of the

Vlasov-Poisson system. The results are depicted in Fig. 4(a),

when the solution has converged after 20 rounds of iteration.

The fluctuations in the electron density are due to the ele-

ment of randomness in the initial velocity of the electrons

introduced by the random Gaussian distribution that was

used to generate the initial velocities. However, these fluctu-

ations are washed out in the double integration process of

solving the Poisson equation, leading to the same motive and

hence the same current (Fig. 4(b)). The number of the

FIG. 4. Comparison between the parti-

cle tracing approach to calculate the

electron density and the analytical

Vlasov solution. The motive (a) and the

electron density (b) for the final round

of the iteration, when the convergence

is reached, are plotted here. In the parti-

cle tracing approach, 107 particles are

tracked in each iteration. This plot cor-

responds to the converged solution after

20 rounds of iteration. The electron

density and motive plots from particle

tracing are calculated based on their

average steady-state values from 10

time steps. (c) Comparison between

the improved-and-extended-Langmuir

(IEL) and the numerical solutions (i.e.,

using Vlasov integrals or particle trac-

ing) for the current-voltage characteris-

tics of the same TEC as in part (a)

with /E¼ 4:5 eV; TE ¼ 2000 K, and

d ¼ 1 mm . (The overall current is cal-

culated for an emission surface area of

3:14� 10�8 m2.) The IEL results were

obtained based on the strategy outlined

in Ref. 11. The particle tracing current

is the average steady state value and

matches the solutions obtained by

applying an asymptotic expansion to

the electron density.
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emitted electrons should be chosen judiciously to ensure that

the number of electrons in the inter-electrode region is higher

than the number of grid points; otherwise, the resulting elec-

tron density becomes disjointed.

It is noted that this approach is more time-consuming

(about 2–3 h on a regular PC) than using an analytical solu-

tion to the Vlasov equation (several seconds). However, the

particle tracing approach is not limited to cases where an

analytical solution to the Vlasov equation exists.

This model was applied to a wide range of the parameters

of TECs, including different emitter temperatures, inter-

electrode distances, and workfunctions. We used the analytical

solutions that exist in this special case based on the IEL

approach that we proposed in Ref. 11 to measure the numeri-

cal accuracy of this new self-consistent method. As depicted

in Fig. 4(b), the results from this method are in complete

agreement with those of the IEL approach. The parameters of

the TEC under study are /E ¼ /C ¼ 4:5 eV; TE ¼ 2000 K,

and d ¼ 1 mm. Furthermore, the solutions obtained by the as-

ymptotic expansion of the electron density obtained from the

Vlasov equation and the particle tracing approach completely

agree with each other.

Self-consistent solution in the presence
of back-emission

This model can be naturally extended to include the

effect of electron emission from the collector as well. It is

assumed that some electrons are emitted from the collector

and are fully absorbed as they reach the emitter. The interac-

tion between the electrons ejected from the emitter and

collector in the inter-electrode region occurs through

the Poisson equation; the motive is cast in the form

wðxÞ ¼ wlðxÞ þ wdp;EðxÞ þ wdp;CðxÞ, where the last two

terms represent the solutions to the Poisson equation with

homogeneous Dirichlet boundary conditions for electron den-

sities originating from the emitter and collector, respectively.

The ranges of velocities of the electrons originating

from the collector can be worked out by using arguments

similar to those in the previous section (Self-consistent solu-

tion in the absence of back-emission). Recalling that positive

velocity is defined along the positive direction of the x axis,

the maximum velocity is positive for electrons at x � xM and

equal to 2
wM�w xð Þ

m

� �1
2

, which is the same as vx;min for elec-

trons originating from the emitter; electrons originating from

the collector can span the range from �1 to vx;min. On the

other hand, at x < xM, the maximum velocity of the electrons

originating from the collector is negative and equal to

�vx;min ¼ � 2
wM�w xð Þ

m

� �1
2

. Therefore, the overall electron

velocity distribution can be written as

f x;vð Þ¼ 2nE xMð Þ
m

2pkB TE

� 	3
2

exp
wM�w xð Þ

kB TE
� mv2

2kBTE

� 	

�H vex7vx;minð Þþ2nC xMð Þ
m

2pkB TC

� 	3
2

� exp
wM�w xð Þ

kB TC
� mv2

2kBTC

� 	
H � vex7vx;minð Þð Þ; (7)

for x � xM (top sign) and x < xM (bottom). nEðxMÞ and

nCðxMÞ represent the contributions of electrons arising from

the emitter and the collector, respectively, to the electron

density at the point of maximum motive.

Equation (7) is subsequently integrated to obtain the

electron densities and replaced in the Poisson equation

d2w xð Þ
dx2

¼ � e2

�0

n xMð Þ
exp cEð Þ 1� erf cE

1=2
� �� �

þ exp cCð Þ 1þ erf cC
1=2

� �� �
;

exp cEð Þ 1þ erf cE
1=2

� �� �
þ exp cCð Þ 1� erf cC

1=2
� �� �

;

x > xM

x � xM;

8<
: (8)

where nðxMÞ ¼ nEðxMÞ þ nCðxMÞ and cC � ðwM � wðxÞÞ=
kBTC. This equation is solved by the same strategy as in the

last section (Self-consistent solution in the absence of back-

emission). Additionally, by arguments similar to those

preceding Equation (6), the overall current density at each iter-

ation number is calculated as J ¼ Jsat;E exp � wM

kB TE

� �
�Jsat;C exp � wMþe V

kB TE

� �
, where V is the potential difference

between the points just outside the collector and emitter. The

first term represents the contribution of the emitter to the total

current density, JE, whereas the second term is the contribution

of the collector, JC.

The value of nðxMÞ is calculated by individually equat-

ing JE and JC to the integral of the x component of the

velocity and the velocity distribution functions, Equation (7),

resulting in JE ¼ e nE xMð Þ 2 kB TE

pm

� �1=2

and JC ¼ e nC xMð Þ
2 kB TC

pm

� �1=2

:

Until now, it was assumed that electrons maintain their

temperatures as they propagate to the opposing electrodes.

Since JC and JE depend on TE and TC, and the equation of con-

tinuity of charge dictates that $:J be constant in the steady-

state, it follows that the electron temperature remains constant.

The validity of this argument is nonetheless dependent on how

well the velocity distribution of the electrons can be captured

by an HM distribution at the point of the maximum motive. To

calculate a limit on the validity of the HM distribution, the dif-

ferential scattering cross-section formula26 for the Coulomb
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interaction potential between two electrons was considered.

The total scattering cross-section, rtot, can be calculated by

integrating the differential scattering cross-section, resulting in

infinity. However, the HM approximation becomes invalid

when the scattering angle is more than 90	. Using this angle as

the lower bound leads to the following non-HM total scattering

cross-section: rtot;nHM ¼ p e2

2 p �0 m v2
rel

� �2
; where vrel is the rela-

tive velocity between the electrons. The distance that electrons

travel before this effect is considerable can be approximated as

ðnðxÞrtot;nHMÞ�1
. In the case of the device examples analyzed

in this article, this distance is 
 700 m. Even for a high-

performance TEC with /E ¼ 2:0 eV and TE ¼ 1600 K, this

distance is 
 200 lm. Given that a modern TEC can easily

have an inter-electrode distance smaller than this, our model

has a very broad range of applicability.

The contributions of the emitter and collector current

densities, JE and JC, to the total current density, Jtot, of a

TEC with /E ¼ /C ¼ 4:5 eV, TE ¼ 2000 K, TC ¼ 1900 K,

and d ¼ 1 cm are presented in Fig. 5(a). The evolution of

the total current density as a function of the iteration number,

n, is plotted in Fig. 5(b). In the case of an applied voltage of

1 V, the converged motive as a function of position is

displayed in Fig. 5(c). Finally, the contributions of the elec-

trons arising from the emitter and the collector to the overall

electron density are depicted in Fig. 5(d). Expectedly, the

electron density arising from the emitter has its maximum

around the emitter, whereas the electrons originating from

collector are mostly concentrated in the proximity of the

collector. Therefore, the overall electron density has two

maxima in the presence of back-emission.

Lastly, it is noted that the methods developed in this

paper can be used to calculate the output characteristics of

TECs for a wide range of workfunctions, temperatures,

applied voltages, and inter-electrode distances. This model

applies as long as the quantum effects (e.g., tunneling in

nanoscale gaps) and relativistic effects (at extremely high

biases and not applicable in the power generation mode) are

negligible. The cases studied here were deliberately chosen

to have high space-charge (and naturally small output power

density) so that electron transport in these conditions could

be investigated. The maximum output power density as a

function of inter-electrode gap size is shown in Fig. 6. It is

FIG. 5. (a) The contributions of the

emitter and collector current densities,

JE and JC, to the total current density,

Jtot, of a TEC with /E ¼ /C ¼ 4:5 eV,

TE ¼ 2000 K, TC ¼ 1900 K, and

d ¼ 1 cm . (b) The evolution of the

total current density as a function of

the iteration number, n. (c) The con-

verged motive as a function of position

for an applied voltage of 1 V. (d) The

contributions of the electrons originat-

ing from the emitter and the collector

to the overall electron density as a

function of position.

FIG. 6. The maximum output power density of a TEC as a function of the

inter-electrode distance. The device parameters are /E ¼ 2:5 eV; /C ¼
2:0 eV; TE ¼ 1800 K, and TC ¼ 700 K. The proposed method was employed

to calculate the output current density at different voltages. These values

were subsequently used to calculate the power density. The maximum power

density was found by sweeping the voltage and calculating the current at

each value of the gap size, due to the space-charge effect.
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assumed that /E ¼ 2:5 eV; /C ¼ 2:0 eV; TE ¼ 1800 K, and

TC ¼ 700 K. Based on the proposed method, for each gap

size, the output current density for various applied voltages

was calculated and subsequently used to calculate the power

density. The maximum value of power density at each gap

size (which occurs at different voltages for different gaps)

was used to produce the data in Fig. 6. Expectedly, at smaller

gaps where the space-charge effects are less palpable, the

change in the maximum power density as a function of dis-

tance is slower than at the higher distances, where the space-

charge effects are more prominent. These trends are in ac-

cordance with the power densities calculated in other

works.8

SUMMARY

We presented a self-consistent approach to derive the

characteristics of thermionic energy convertors. In the case

that the analytical solution of the Vlasov equation is not pos-

sible, our model uses a particle tracing approach to calculate

the electron densities. Moreover, by introducing an asymp-

totic expansion to deal with the ill-behaving functions, the

range of applicability of our approach is significantly

increased in the presence of an analytical solution. The

model also circumvents the splicing issues and captures the

entire characteristics of thermionic convertors. The results of

this strategy were shown to be in agreement with previous

solutions in the absence of back-emission. Subsequently, this

method was employed to calculate the output characteristics

of thermionic convertors in the presence of back-emission.
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APPENDIX: CONVERGENCE OF THE SOLUTIONS TO
THE POISSON-VLASOV SYSTEM

As with any two coupled differential equations with nec-

essarily shared parameters, one expects that three scenarios

could arise: the solutions to the two equations diverge, oscil-

late, or converge in each subsequent step. Divergence, in an

absolutely mathematical sense, could occur if the two equa-

tions are incompatible with each other, i.e., the increments at

each step amplify each other because a common solution to

the two equations does not exist. Another type of diverging

solution can arise even for compatible equations when the

damping ratio is not chosen properly, and the intermediary

solutions exceed the maximum finite floating-point number

permissible in the programming language. The other possi-

bility is for the solutions to oscillate, which could occur in

cases where a common solution to the two equations does

not exist, although the changes do not amplify each other

(i.e., the electron density is not an increasing function of

motive, whereas the motive is an increasing function of

electron density), or if a small value of a damping ratio is

chosen. Lastly, the equations can converge if they share a

common solution and if a proper damping ratio is selected.

The diverging solutions should be ruled out in the Poisson-

Vlasov system, since the changes in one do not amplify the

solutions of the other; e.g., incrementing the motive would

significantly reduce the number of electrons with enough

kinetic energy to overcome the maximum barrier, leading to

reduced potential in the next step. Therefore, it remains to

investigate if the Poisson-Vlasov system belongs to the oscil-

lating type or the converging type.

It can be seen that the steady state response of a TEC in

the absence of ions or alternating potentials (all the cases

studied in this paper) belongs to the converging category by

performing the following analysis:

1. Choose a value of 0 < a < 0:1 and run the simulation.

2. If the solution converged after a certain iteration number,

n, set a to a higher value, i.e., 0:2 and run the simulation

again to a high number of iterations (e.g., n ¼ 1000). If

the solution starts to oscillate, it shows that the system

does not have a common solution to both equations.

However, if the solution remains constant in the succeed-

ing iterations, the system has settled on the common solu-

tion between the two equations. The latter occurs in all

cases that we have studied. The mixing ratio, a; cannot be

set to its maximum, i.e., 1. This is because the solution to

the Poisson equation is calculated numerically, and its

accuracy is determined by the fineness of the mesh. The

slightest numerical mismatch in the motive (an error on

the order of 10�10) can grow exponentially due to the

highly nonlinear nature of the Vlasov equation. For our

cases, the number of mesh elements in the inter-electrode

region is 1000. A mixing ratio of 0:2 was found to be

enough to dampen the numerical errors that arise from the

finite size of the mesh elements plus all the numerical

errors in the other calculations.

3. If the solution oscillates and never reaches convergence,

use a smaller value of a, but continue the simulation to a

higher number of iterations, since the changes at each step

have been damped more severely.

4. Go back to 2 (if the solution converged) and 3 (if the solu-

tion was oscillatory).

If the solution is always oscillatory (step 3), it can be

imagined that a common solution to the two equations does

not exist. This has never been observed for the cases that we

have studied. A complete proof of the oscillatory nature of

the solution would require an infinite number of iterations,

with ever smaller values of a. This is obviously not feasible

using a computer, since the smallest floating-point number

of the programming language would soon be reached.

However, this has never been observed in our cases (depend-

ing on the value of a; the test ends immediately in step 2

with non-oscillatory solutions, or for higher values of a in

step 3 for one iteration and subsequently in step 2 with a

non-oscillatory solution.) Therefore, this could be considered

an a posteriori proof for the convergence of the solutions of

the Poisson-Vlasov system in the steady state response of the

TECs in the absence of ions or alternating currents.
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An a priori argument for the existence of converging

solutions to the Poisson-Vlasov system in the space-charge

limited regime can be deduced from the work of Langmuir

and Hatsopoulos,9,10 where they present a closed-form solu-

tion to the system, signifying a unique current associated

with each voltage in the space-charge limited mode, in the

absence of the back-emission. In the saturation regime, the

current is constant (for as long as the Schottky effect is negli-

gible). In the retarding mode, there is also a unique corre-

spondence between the current and the applied voltage.
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