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a b s t r a c t

This paper investigates size-effects in the torsional response of single walled carbon nanotubes (SWCNTs)
by developing a modified nonlocal continuum shell model. The purpose is to facilitate the design of
devices based on SWCNT torsion by providing a simple, accurate and efficient continuum model that
can predict the corresponding buckling loads. To this end, Eringen’s equations of nonlocal elasticity are
incorporated into the classical models for torsion of cylindrical shells given by Timoshenko and Donnell.
In contrast to the classical models, the nonlocal model developed here predicts non-dimensional buckling
torques that depend on the values of certain geometric parameters of the CNT, allowing for the inclusion
of size-effects. Molecular dynamics simulations of torsional buckling are also performed and the results
of which are compared with the classical and nonlocal models and used to extract consistent values of
shell thickness and the nonlocal elasticity constant (e0). A thickness of 0.85 Å and nonlocal constant val-
ues of approximately 0.8 and 0.6 for armchair and zigzag nanotubes respectively are recommended for
torsional analysis of SWCNTs using nonlocal shell models. The size-dependent nonlocal models together
with molecular dynamics simulations show that classical shell models overestimate the critical buckling
torque of SWCNTs and are not suitable for modeling of SWCNTs with diameters smaller than 1.5 nm.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Carbon nanotubes (CNTs) have attracted much attention be-
cause of their superior mechanical, optical, thermal and electrical
properties and potential applications in the development of novel
nano-scale devices [1–3]. Further development of CNT-based de-
vices requires a good understanding of their mechanical behavior.
Basic mechanical properties such as Young’s modulus, shear mod-
ulus, Poisson’s ratio and maximum tensile and compressive
strengths have been studied rigorously, a review of which is given
by Qian et al. [4]. Different approaches have been used to charac-
terize CNT properties; first-principles methods based on quantum
mechanical calculations, semi-empirical methods such as molecu-
lar dynamics (MD) simulations, continuum modeling and experi-
mental methods which mostly consist of CNT manipulation with
Atomic Force Microscopes [5–7]. Of these, first-principles methods
are the most accurate, but are computationally expensive and lim-
ited to the study of systems with a small number of atoms.

Continuum modeling is perhaps the most computationally effi-
cient method for the theoretical study of CNTs, but classical contin-
uum models are unable to account for quantum effects arising
from the discrete nature of matter at the nano-scale. To overcome

this issue, modified continuum models have been proposed which
can deal with larger systems but are also able to include nano-scale
size-effects. Multi-scale continuum models [8], surface energy
incorporated models [9] and nonlocal elasticity [10–13] have been
successfully used to this end.

An important issue in the CNT continuummodeling is the selec-
tion of appropriate values for the continuum properties such as the
equivalent elastic modulus and CNT thickness [14,15]. It is chal-
lenging to determine these quantities in a consistent manner and
there are discrepancies in the values reported in the literature.
One possible solution is the atomisitc-based finite deformation
shell theory proposed by Wu et al. [15] where the constitutive
relations between stress, moment and strain are given in terms
of inter-atomic potentials without the need to define a value for
shell thickness. This theory has been used to study tension, torsion
and bending of CNTs [15].

Recently, a number of nano-scale devices have been developed
which use carbon nanotubes as torsional elements [16–18]. There-
fore, it is important to fully understand the torsional properties of
CNTs such as the buckling strain and buckling torque for reliable
design of nano-scale torsional devices.

Wang and Wang [19] used a classical multi-shell model to
study the torsional buckling of multi-walled carbon nanotubes
(MWCNTs). Lu and Wang [20] studied the torsional buckling of
MWCNTs under combined torque and axial loads using a classical
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shell model. Wang et al. [21] studied the torsional buckling of CNTs
using classical shell models and determined the applicability of dif-
ferent models for a range of CNTs with different aspect ratios. The
aforementioned continuum models are based on the classical elas-
ticity theory [22] and are unable to capture the size-dependency of
CNT structural response, which could result in inaccurate estima-
tion of the critical loads.

In this paper, an isotropic continuum shell model for the torsion
of CNTs based on the concepts of nonlocal elasticity [10] is pro-
posed to account for the size-dependency. The objective is to study
size-effects on the torsional buckling of carbon nanotubes which is
a determining factor for the design of torsion based CNT devices. It
is also shown that the nonlocal elasticity parameter can be deter-
mined from molecular dynamic simulations through a non-linear
optimization process, and that classical elastic shell models are un-
able to predict the torsional buckling loads that match well with
molecular dynamics results. It is seen that the modified nonlocal
model presented here, along with the values for shell thickness
and nonlocal constant extracted from MD simulations can be used
to efficiently and accurately predict the buckling torque of CNTs, a
necessary step in the design of devices based on CNT torsion.

2. Modified continuum shell model based on nonlocal elasticity

The concept of nonlocal elasticity was first introduced by Erin-
gen [10] in the 1980s to study screw dislocation and surface waves
in solids. Unlike classical elasticity models, the nonlocal elasticity
theory assumes that the stress at a reference point X in a body de-
pends not only on the strains at X, but also on strains at all other
points of the body [10]. Peddison et al. [11] recently studied the
bending of nano-scale beams using nonlocal elasticity and con-
cluded that size-effects could be significant for nano-sized struc-
tures. Zhang et al. [12,13] used nonlocal elasticity to show the
small-scale effects on buckling of MWCNTs under axial compres-
sion and radial pressure. A number of other researchers have used
nonlocal elasticity to study the vibration and propagation of waves
in CNTs [23,24].

It is important to note the fact that a graphene sheet is an iso-
tropic structure. An apparent anisotropy (directional dependence
of modulus) is introduced when a graphene sheet is rolled up to
produce a tube. The root of anisotropy of a nanotube is therefore
related to chirality (roll up vector) in contrast to inherent material
anisotropy. A nanotube can therefore be represented by an ‘equiv-
alent’ isotropic material with a modulus that is a function of chiral-
ity. In our opinion, it is unnecessary to use traditional anisotropy
models involving several elastic moduli as it would be difficult to
physically determine these moduli.

In the ensuing sections, two new nonlocal elastic isotropic thin
shell models for the torsional buckling of CNTs are proposed. These
models are obtained by modifying the classical Timoshenko model
[22] and the Donnell model [25] by using the concepts of nonlocal
theory of elasticity [10]. It is assumed that a CNT can be repre-
sented by an isotropic cylindrical thin shell with an average diam-
eter equal to that of the nanotube.

2.1. Modified Timoshenko shell model

Fig. 1 shows the geometry of a cylindrical shell of radius a with
a cylindrical coordinate system (r, h, x) with the x-axis along centre
of the cylinder.

The displacements in the axial, circumferential and radial direc-
tions, measured from the twisted equilibrium state of the shell are
denoted by u, v and w respectively and are functions of only x and
h. The non-zero strains exx, exh and ehh can be expressed in terms of
displacements in their classical sense [22].

Following Eringen [10], the nonlocal elasticity based stress–
strain relationship which relates the non-zero stresses rxx, rxh

and rhh to the non-zero strains of the present class of problems
can be expressed in the following form:

rxx � nr2
Rrxx ¼ E
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where Nij (i, j = x, h) is the force per unit length and Mij (i, j = x, h) is
the moment per unit length on a cross section of the shell respec-
tively; and h is the shell thickness (Fig. 2).

Substituting Eqs. (2) and (3) into the classical equations of
translational and rotational equilibrium for a cylindrical shell prior

Fig. 1. Cylindrical thin shell representation of a SWCNT with the coordinate system.

Fig. 2. Definition of forces and moments per unit length acting on a shell.
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to buckling [22], the following system of coupled differential equa-
tions are obtained for the displacements u, v and w.
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where / ¼ T 1�t2ð Þ
2pa2Eh , T is the applied torque prior to buckling and

a ¼ h2

12a2.
For a long cylinder, the buckling displacements can be ex-

pressed as [22]
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where k ¼ mpa
l , m is number of half waves in the axial direction cor-

responding to an axial half-wave length of pa/k and n is the number
of waves in the circumferential direction.

Substitution of Eq. (5) in (4) and the solution of the resulting
eigenvalue problem, the critical buckling torque of the modified
Timoshenko model based on nonlocal elasticity theory (MNT

Cr ) and
its non-dimensional value (MNT

Cr ) are:
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For comparison, the non-dimensional buckling torque (MT
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sponding to the classical thin shell model based on ideal elasticity is
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The results of Eqs. (6) and (7) are based on the following critical
value for k given by Timoshenko and Gere [22];

kcr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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It is clear from Eqs. (6) and (7) the former is size-dependent due
to the presence of the shell radius in the denominator. From Eq. (8)
it is seen that the ratio of the classical to nonlocal critical torques
increases with decreasing values of the nanotube radius (a) and

number of waves in the circumferential direction of the buckled
shape (n). Note that when e0 = 0, obviously the nonlocal model re-
sult reduces to the classical solution.

2.2. Modified Donnell shell model

Compared to Timoshenko’s model [22], Donnell’s shell model
[25] is simpler since the governing differential equation of the sys-
tem depends only on the radial displacement w. In Donnell’s anal-
ysis, the radial equilibrium of the shell is considered. Substitution
of Eqs. (2) and (3) into the classical equilibrium equations pro-
posed by Donnell [25] yields the following governing equation
for torsional buckling of cylindrical shells in terms of the radial
displacement.
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where D ¼ Eh3

12 1�t2ð Þ is the bending rigidity and N0
xh is the shearing

force at the onset of buckling. When n = 0, Eq. (10) reduces to the
classical Donnell model governing equation [25]. The buckling tor-
que is determined from Eq. (10) by assuming that the buckling
mode-shape is of the following form:
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� �
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The solution for the shearing force N0
xh at the onset of buckling

is:
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Minimizing Eq. (12) with respect to k and using the relation
T ¼ 2pa2N0

xh, the critical buckling torque of the modified Donnell
model based on nonlocal elasticity theory (MND

cr ) and its non-dimen-
sional value (MND

cr ) are:
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For comparison, the non-dimensional buckling torque of the
classical Donnell model is:
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It has been shown [22] that the minimum critical buckling tor-
que corresponds to n = 2 and for small values of k2 compared to n2

the above equation becomes identical to the ratio of critical buck-
ling torques obtained from the Timoshenko model. Note that clas-
sical Donnell’s model has a higher buckling torque compared to the
classical Timoshenko model (Eq. (12)).

Fig. 3 shows the ratio of classical to modified critical buckling
torques obtained from Eqs. (8)–(15) for the values of kcr calculated
from Eq. (9) and a value of d = 1.41 Å used as the inter-atomic spac-
ing of the CNT structure. It is seen that for CNTs with small radii,
i.e., less than 0.7 nm, the classical buckling torque is significantly
higher than the nonlocal buckling torque.
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3. Molecular dynamics modeling of torsional buckling

The software package Nanohive1 [26], incorporated with the
AIREBO potential field [27] is used to perform molecular dynamic
simulations on a range of nanotubes in order to determine the
equivalent continuum properties applicable to the current contin-
uum shell models and assess their validity in CNT modeling. The
Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO)
potential is an extension of the commonly used REBO potential
developed for solid carbon and hydrocarbon molecules [28]. The
extensions that AIREBO potential provides are:

(a) Non-bonded, intermolecular interactions, modeled with a
Lennard–Jones (LJ) 12-6 potential

(b) Four-body torsional interaction, modeled with a torsional
potential with a single minimum

In the present simulations, once the buckling has occurred, the
four-body torsional potential becomes important and can affect
the equilibrium deformation of the system. To determine the buck-
ling state of a certain nanotube under torsion, the modeling is
started from an initial non-twisted configuration followed by uni-
form twists (u) applied incrementally along the nanotube. The new
atomic coordinates are subsequently used as the input to the MD
simulator. MD is used to perform relaxation on the twisted CNT
until equilibrium is reached and the potential energy of the system
converges to a minimum value. By looking at the evolution of the
system energy with respect to time, it is found that 40,000 time-
steps of 0.5 fs each are enough to reach equilibrium. For each nano-
tube, the above simulation is conducted at different values of
twist/shear strain and it is seen that above a certain value of twist,
which is identified as the critical twist for buckling (ucr), the nano-
tube collapses into a buckled shape when allowed to relax for a
sufficient amount of time (Fig. 4).

Before comparing the results for the critical torques from MD
simulations with the nonlocal elasticity shell models, the buckling
mode-shapes obtained from the MD simulation are compared with
the assumed mode-shapes of the continuum models (e.g. Eq. (5)).
For a (8, 0) zigzag nanotube with a length of 10 nm, a radius of
0.31 nm, a shell thickness of 0.08 nm and a Poisson’s ratio of 0.2
[29], the buckling wave number calculated from Eq. (9) corre-
sponds to k ¼ 0:75 ) m ¼ 7:4 &m=2 ¼ 3:7. This means that there
are 3.7 wavelengths in the longitudinal direction of the buckled
nanotube. Fig. 5 shows a MATLAB representation of the assumed
buckling mode-shape of the above nanotube based on Eq. (9) and
the actual mode-shape obtained from the MD simulations.

Taking into consideration the effects of the fixed boundary con-
ditions at the nanotube ends in the MDmodel, it is clear from Fig. 5
that buckling mode-shapes of the nonlocal continuum and MD
models agree closely. The number of longitudinal waves in the
buckled shape corresponding to MD simulations is 3.6 which is
very close to the value obtained from the continuum model.

The MD simulator allows the calculation of the potential, kinetic
and total energies of the nanotube, its temperature and coordi-
nates of the atoms at each time step. Fig. 6a shows the potential
energy (U) progression of a (10, 0) nanotube based on 18 simula-
tions corresponding to different twist angles/shear strains. The
slope of the potential energy – twist curve can be related to the tor-
que to obtain a torque-twist relationship. The following basic rela-
tionships exist between U, u, M and torsional stiffness (K):

MðuÞ ¼ dUðuÞ
du

; KðuÞ ¼ d2UðuÞ
du2 ð16Þ

For a thin cylindrical shell of length L, shell thickness h and shear
modulus G the torsional stiffness is defined by K ¼ 2pa3Gh=L:
Therefore,

Fig. 3. Ratio of classical to nonlocal buckling torques for two different values of e0.

Fig. 4. Relaxation of a (5, 5) armchair nanotube with end twist of 3 radians
corresponding to a uniform shear strain of 0.1 for 40,000 timesteps: (a) start of
simulation, (b) after relaxation for 6000 timesteps, (c) after relaxation for 6500
timesteps, (d) after relaxation for 40,000 timesteps, and (e) progression of potential
energy of the CNT during the 40,000 timesteps of relaxation.

Fig. 5. (a) Representation of predicted buckling mode-shape using MATLAB and (b)
actual buckling mode-shape predicted using MD simulations.
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G � h ¼ 1
2pa3

d2UðuÞ
du2 ð17Þ

Eq. (17) can be used to calculate the surface shear modulus
(G � h) directly from the results of MD simulations and without
the need for any assumptions on the value of shell thickness h.

It is important to note that based on the length to diameter as-
pect ratio (L/Diam), a CNT may buckle in the shaft-shape or shell-
shape pattern [21]. Previously, the classical formula of Eq. (7) has
mostly been used to study the shell-shape buckling of CNTs, which
occurs when,

3:9a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2ð Þp
h

 !0:5

6 L
Diam

6 p
4

1
3

D

Eha2

� �3
 !�0:25

ð18Þ

A series of torsional buckling simulations are performed on zigzag
and armchair nanotubes with different diameters using the MD
software. The lengths of the simulated nanotubes are chosen to
keep the aspect ratio approximately constant and within the range
of Eq. (18). Table 1 shows the critical buckling torque and strain
(ccr ¼ ða=LÞucr , where ccr denotes the buckling shear strain).

It is evident from Table 1 that armchair nanotubes generally
have a higher torsional stiffness compared to zigzag nanotubes of
the same dimensions. However, armchair nanotubes buckle at a
lower strain and their critical buckling torque is only slightly high-
er than a zigzag nanotube of same diameter.

The shear modulus values obtained from the present MD simu-
lations are within the range of previously reported experimental
and numerical results [5,30]. Using MD simulations, Yakobson
et al. [5] reported a value of 363 GPa nm for the in-plane stiffness
(E � h) and a Poisson’s ratio of 0.19 for a (7, 7) armchair CNT. Using
these two values the surface shear modulus can be calculated as
G � h = E � h/2(1 + m) = 152.5 GPa nm. Interpolating the surface shear
moduli for (6, 6) and (8, 8) armchair nanotubes (Table 1b), we find
a value of 151 GPa nm for the surface shear modulus of a (7, 7)
CNT. This is almost identical to the value reported by Yakobson
et al. The buckling strains obtained in the present study are lower
than those reported by Yakobson et al. [5]. This can be due to the
use of the AIREBO potential instead of the Tersoff–Brenner poten-
tial. The AIREBO potential is an improvement to the Tersoff–Bren-
ner potential. In addition, it is well known that MD simulation
results are strain-rate dependent. As the strain rate decreases
and the system has more time to relax to an equilibrium state it
is seen that properties such as the yield strain decrease [31]. We
have performed quasi-static simulations, which consider deforma-
tions taking place at infinitely small strain rates. Quasi-static sim-
ulations make sure that the deformation of the tube happens
simultaneously at all points and there are no localization effects.
This contributes to the fact that our buckling strains are smaller
than those reported by Yakobson et al. [5].

Hall et al. [30] have performed experimental measurements on
the torsional properties of single-wall CNTs. Assuming a shell
thickness of 3.4 Å, they calculated an average shear modulus of
0.455 TPa for single wall carbon nanotubes with an average diam-
eter of 1 nm. This corresponds to a surface shear modulus (G � h) of
154.7 GPa nm. Table 1b shows that present study yields values of
about 150 GPa nm for the surface shear moduli of armchair CNTs
with diameters around 1 nm.

4. Calculation of shell thickness and nonlocal constant values

An important issue in the application of the nonlocal elasticity
models to CNTs is the determination of the values of the nonlocal
elasticity constant e0, equivalent shear modulus and shell thick-
ness. A direct theoretical relationship between the MD simulations
and nonlocal elasticity theory to determine these continuum quan-
tities from the atomistic properties does not exist. However some
CNT properties such as the in-plane stiffness (E � h), surface shear
modulus (G � h) and bending rigidity (D) can be defined in terms
of measurable characteristics of a CNT without any assumptions
for shell thickness. This is seen in Eq. (17) where the surface shear
modulus (G � h) is calculated directly from the change in the poten-
tial energy with applied twist, both of which can be directly ob-

Fig. 6. MD simulation results: (a) variation of potential energy of (8, 0) nanotube
with applied shear strain (twist) and (b) stress–strain curve calculated using slope
of potential energy curve.

Table 1
Properties and critical torques and twists of: (a) zigzag CNTs and (b) armchair CNTs.

Chiral
indices

Diam
(Å)

Length
(Å)

L/
Diam

G � h
(GPa nm)

Mcr (N m) ucr

(radians)
ccr

(a)
(10, 0) 7.75 122.0 15.7 136.15 6.53E�18 1.65 0.052
(12, 0) 9.30 140.1 15.1 131.19 7.22E�18 1.22 0.041
(14, 0) 10.8 169.8 15.2 127.28 7.67E�18 1.05 0.034
(16, 0) 12.4 184.7 14.9 123.34 8.20E�18 0.85 0.029
(20, 0) 15.5 245.8 15.9 116.00 9.00E�18 0.71 0.022

(b)
(5, 5) 6.70 98.91 14.8 159.11 5.70E�18 1.50 0.051
(6, 6) 8.05 118.4 14.8 153.17 6.45E�18 1.24 0.042
(8, 8) 10.7 159.9 14.9 148.80 8.01E�18 0.90 0.030
(8, 8) 10.7 243.0 22.7 148.50 8.04E�18 1.38 0.030
(8, 8) 10.7 319.3 29.9 148.60 8.02E�18 1.81 0.030
(10, 10) 13.4 199.0 14.8 145.32 9.66E�18 0.70 0.024
(12, 12) 16.1 238.1 14.8 144.12 1.09E�17 0.55 0.019
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tained from MD simulations without the need to assume a value
for shell thickness.

One way of addressing the wall-thickness issue is to use values
of bending rigidity and in-plane stiffness obtained from MD or ab
initio simulations together with their classical continuum defini-
tions to calculate the values of shell thickness for use in equivalent
continuum models. The aforementioned approach has been used
by Kudin et al. where a valued of 0.89 is reported for the CNT shell
thickness [32]. Once the shell thickness is calculated, knowing the
values of in-plane stiffness, bending rigidity and torsional stiffness,
other properties such as the Young/shear modulus can be
determined.

Table 2
Values of shell thickness (h) and nonlocal constant (e0) obtained from non-linear
least-square fitting of MD simulation results with classical shell and nonlocal shell
models.

h (Å) e0 Residual norm (nN2 nm2)

Armchair
Classical Timoshenko 0.75 4.11
Nonlocal Timoshenko 0.85 0.85 0.09
Nonlocal Donnell 0.85 0.79 0.1

Zigzag
Classical Timoshenko 0.81 5.9
Nonlocal Timoshenko 0.86 0.61 0.04
Nonlocal Donnell 0.86 0.57 0.05

Fig. 7. Comparison of buckling torques from classical shell and nonlocal shell models with MD results for (a), (c), (e) zigzag and (b), (d), (f) armchair CNTs based on properties
given in Table 2.
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In this paper it is proposed to determine values of shell thick-
ness and the nonlocal constant based on a non-linear least-square
fitting by minimizing the Euclidean norm of the difference be-
tween the buckling torques obtained directly from the MD simula-
tions and the nonlocal elasticity shell model. This approach will
also be used to determine the shell thickness for the classical shell
models.

In order to reduce the number of parameters to be determined
from the optimization analysis, the surface shear modulus (G � h) is
obtained directly from the MD torsional simulations and a Pois-
son’s ratio of 0.2 is used based on the existing literature [29].
Therefore, the shell thickness h is considered as the only optimiza-
tion variable for the classical continuum shell models and both h
and e0 are considered as optimization variables for the nonlocal
elasticity based models. Values of h and e0 obtained from the opti-
mization analysis are shown in Table 2.

The analysis yields a shell thickness of 0.81 and 0.75 Å based on
the classical Timoshenko shell model for the zigzag and armchair
CNTs respectively. Although these values are close to those previ-
ously reported based on theoretical concepts [15], the classical
shell model does not show the correct trend of the critical buckling
torque with changing diameter (Fig. 7a and b). This fact is also ver-
ified by the high residual norm in Table 2. In comparison, the non-
local elasticity shell models provide a much better fit with the MD
results (Fig. 7c–f) over a range of diameters because of the very low
residual norms obtained from the analysis as shown in Table 2. The
nonlocal Timoshenko shell model predicts a shell thickness of 0.85
and 0.86 Å and a nonlocal constant of 0.85 and 0.61 for armchair
and zigzag nanotubes respectively. The nonlocal Donnell shell
model predicts a shell thickness of 0.85 and 0.86 Å and a nonlocal
constant value of 0.79 and 0.57 for armchair and zigzag nanotubes,
respectively.

We note that the values of shell thickness calculated here using
the nonlocal shell models are very close to the value of 0.89 Å pre-
viously reported by Kudin et al. [30] (only a 5% difference is ob-
served). The difference between the values of e0 obtained for
zigzag and armchair nanotubes may be attributed to the apparent
anisotropy of CNT structures introduced due to roll up. An impor-
tant observation is that changing the aspect ratio of CNTs while
keeping within the limits of shell-shape buckling does not affect
their torsional properties (rows 3–5 of Table 1b). In other words,
if the aspect ratio of the CNT changes within the limits of Eq.
(18), the buckling torque, surface shear modulus and the buckling
shear strain remain unchanged and the same set of values can be
used for the nonlocal constant and shell thickness. Thus, the value
of the nonlocal constant is independent of the magnitude of the
geometric variables of the system.

5. Concluding remarks

Two nonlocal elasticity based shell models for the torsional
buckling of carbon nanotubes are presented by incorporating the
nonlocal elasticity based constitutive relations into the classical
Timoshenko and Donnell shell models. The non-dimensional buck-
ling torques corresponding to the nonlocal shell models are size-
dependent. An important aspect in the application of continuum
model to CNTs is the determination of a consistent set of continuum
properties for the continuummodel. In this regard, a series of nano-
tubes are analyzed using MD simulations to calculate the critical
buckling torque and determine its variation with the tube diameter
and chirality (zigzag and armchair). The continuum properties of
the CNTs such as the shell thickness and nonlocal elasticity constant
are then determined by using non-linear least-square fitting of the
MD results with the shell models. This results in consistent values
for shell thickness and the nonlocal elasticity constant.

The properties obtained from the least-square fitting shows that
for CNTs with small diameters, nonlocal shell models consider the
existing size-effects and can accurately model the torsional buck-
ling of CNTs whereas the classical shell models do not. A thickness
of 0.85 Å and nonlocal constant (e0) values of approximately 0.8
and 0.6 for armchair and zigzag nanotubes respectively are recom-
mended for torsional analysis of CNTs by using nonlocal contin-
uum shell models. Furthermore, the present analysis shows that
classical shell models overestimate the buckling torques. It is seen
that the size-effects in torsional buckling of CNTs become signifi-
cant when the CNT diameter is small, i.e., for diameters smaller
than 1.5 nm there is more than 15% difference between the classi-
cal and nonlocal solutions for buckling torque. However changing
the length of the CNT within the shell-shape buckling region does
not affect the value of buckling torque, and in the case of torsional
buckling size-effects are independent of the length or aspect ratio
of the CNT.

The present analysis provides consistent values for the shell
thickness for two different nanotubes based on the nonlocal
elasticity models. This is physically acceptable and furthermore
the distinctly different values obtained for the nonlocal elastic-
ity constant of the two types of nanotubes from the current
modeling confirms that nonlocal models can effectively quantify
the differences in the structural response due to different
chiralities.
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