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We present a first-principles calculation of the emission current in a single-walled carbon nanotube electron
source. We have employed the nonequilibrium Green’s function and Fisher-Lee’s transmission formulation to
describe electronic transport through the system. The simulation results reproduce the trends observed in
experimental data closely and, in particular, the current saturation and deviation from the Fowler-Nordheim
behavior. The proposed numerical approach is useful whenever a region of vacuum is present in the system
Hamiltonian.
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I. INTRODUCTION

Single-walled carbon nanotubes �SWNTs� are mechani-
cally strong and physically stable structures that can be
thought of as a rolled-up layer of graphene. They have diam-
eters of about a nanometer and can have lengths of up to
centimeters, resulting in very high aspect ratios. This leads to
strong electric field enhancement at their tips. SWNTs are
also capable of supporting current densities of up to
109 A cm−2, orders of magnitude higher than typical con-
ductors such as copper and silver. These properties make
them ideal candidates for electron emitters. Low turn-on
voltages and brightness values of an order of magnitude
higher than traditional cold field-emitters have already been
demonstrated.1

In 1928, Fowler and Nordheim proposed a model for
field-electron emission �FEE� from surface emitters.2 The
model assumes that the source has a metallic density of
states and, upon the application of an electric field, electrons
in the metal are accelerated toward a one-dimensional poten-
tial barrier. If the electric field is sufficiently high, some elec-
trons will tunnel through the junction into the vacuum. The
emitted current is exponentially dependent on the barrier
width and, when graphically expressed on ln�IE−2� vs E−1

scales, where I is current and E is electric field, will exhibit
a linear relationship. This common way of expressing FEE is
known as the Fowler-Nordheim �FN� plot. This model has
been widely used by experimentalists to interpret the perfor-
mance of electron sources, including nanotube-based
emitters.3,4 However, the full applicability of this model to
the emission process from SWNTs is not obvious and has
been debated in the literature.5 The nanotube tip does not
necessarily behave like a metal; electrons are not completely
free and the effect of the tip’s atomic structure can be domi-
nant. Moreover, a SWNT is a three-dimensional structure
�3D� and not an infinitely wide surface; thus, a more detailed
treatment than the FN model is required.

A SWNT emitter cannot be considered as a bulk and
treated classically with macroscopic physical models. First-
principles or mesoscopic models have to be used for accu-
racy. There has been significant work on first-principles
modeling of SWNT emitters. These have shown the impor-
tance of tip orbitals in the emission process,6 the effective
work function of SWNTs under a field,7 the behavior of the

potential barrier,8 and the external field enhancement of
SWNTs.9 There has also been attempts at estimating the
emission current. In particular, in their valuable work, Han
and co-workers calculated the many body wave function of
the emitting nanotube using a pseudopotential-based, time-
dependent density functional theory approach.10,11 However,
in order to calculate transmission the authors used a one-
dimensional potential barrier. Also, Buldum and Lu12 simu-
lated the potential barrier of a �5,5� carbon nanotube under
an electric field and calculated the emission current using a
one-dimensional barrier.

To the best of our knowledge, an accurate calculation of
the emission current using a first-principles method, which
takes into account the full three-dimensional nature of the
problem and incorporates vacuum in the Hamiltonian has not
been reported previously. Here, for the first time we calculate
the emission current by using a three-dimensional real-space
first-principles Hamiltonian in the nonequilibrium Green’s
function and Fisher-Lee formulation.13

II. METHODOLOGY

In a typical FEE experiment using a SWNT as an emitter,
a SWNT �a few micrometers long� is grown on a cathode
electrode and placed in front of an anode, such as shown in
Fig. 1�A�. Our goal is to calculate the field-emission current
from the SWNT using a fully first-principles approach,
which is a very computationally intensive method and only
allows a small section of the SWNT to be simulated. It is
appropriate to choose an area close to the tip of the SWNT,
as it has been shown that in an external field most of the
nanotube remains an equipotential surface and the potential
drop occurs mainly very close to the tip of the SWNT.8 As a
result, the emission characteristics of the device are governed
by the region that encapsulates the SWNT tip and vacuum,
shown in Fig. 1�B�. However, such a short section of the
nanotube would not recreate the strong field enhancement
that the entire nanotube would have due to its high aspect
ratio. To compensate for this, we will use an electric field
value that already contains the effect of the field enhance-
ment �several hundred times stronger than the applied exter-
nal field�.9

We assume that this section of the nanotube tip and
vacuum �shown in Fig. 1�B� and referred to as the channel
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from now on� is connected to the continuation of the nano-
tube on the left side and vacuum on the right side. The cur-
rent through such a channel can be calculated using the
Landauer-Büttiker formula14

I =
2q

h
� T�E��f1�E� − f2�E��dE , �1�

where f1�E� and f2�E� are the Fermi functions of the con-
tacts, T is the transmission of the channel, q is the elemen-
tary charge, and h is Planck’s constant, and E is energy.

The single particle nonequilibrium Green’s function
�NEGF� has the following form in the spectral
representation:15

G = ��E + i0+� − Hchannel − �1 − �2�−1, �2�

where Hchannel is the channel Hamiltonian, i is the unit imagi-
nary number, 0+ is an infinitesimally small positive number,
and �1 and �2 are the self-energy terms that account for the
coupling of the semi-infinite contacts to the channel. The
transmission of the channel can be computed using the
Fisher-Lee relation

T = Tr��1G�2G†� , �3�

where �1= i��1−�1
†� and �2= i��2−�2

†�.
This formalism provides a powerful tool for calculating

the transport characteristics of nanoscale structures. The
proper definition of the Hamiltonian operator, Hchannel, and
the self-energy terms, �1 and �2, is essential in obtaining
physically accurate results. Here, one challenge is how to
deal with the vacuum region. In our approach, the three-
dimensional Hamiltonian is built in a real-space basis and
encapsulates both the SWNT and vacuum since it is straight-
forward to define vacuum in a real-space basis. This is done
by discretizing the kinetic energy term using difference op-
erators in Cartesian coordinates and projecting the potential
term, obtained from some other first-principles calculation,
onto the real-space basis �the potential in the area close to
atoms can be calculated using available first-principles pack-
ages that employ atomic basis sets. The potential in the

vacuum region far away from the atoms is determined by the
applied field�. By encapsulating both the SWNT and vacuum
as the channel, one can easily apply the Fisher-Lee formula-
tion to calculate transmission.

In order to build this Hamiltonian in real space, we use
the first-principles software package GAUSSIAN 03,16 which
provides the advantage of different levels of theory and a
built-in utility that can project the self-consistent field �SCF�
potential onto a real-space basis. A good level of theory is
the Hartree-Fock �HF� formalism, which has been shown to
estimate the occupied levels accurately, which are the most
relevant in our calculations.17 Density functional theory
�DFT� would also be a natural choice, however, the most
commonly used exchange-correlation functionals, namely
the local density approximation �LDA� and the generalized
gradient approximation �GGA�, have been shown to overes-
timate the potential term under an electric field.18,19

TRANSIESTA,20 an existing transport solver, is based on
SIESTA,21 which lacks the flexibility of different levels of
theory �is limited to DFT only�, even for DFT it is limited to
LDA and GGA. However, SIESTA offers the advantage of
better scaling of computation time with the size of the sys-
tem. In this work we used GAUSSIAN 03.

The self-energy terms in the real-space basis can be cal-
culated by using the formulation developed by Appelbaum et
al.22 This method assumes that the contacts are equipotential
bodies, with potential values equal to the potential at the
corresponding ends of the channel. Each self-energy term
takes the form

� = − t2g , �4�

where t= −�2

2ma , in which a is the lattice spacing in the real-

space basis, m is the electron mass, and g= A+S�A�2−4t2IS−1

2t2 ,
where A=EI−H2D �E is energy and I is the identity matrix�
and A�=S−1AS. Here, H2D is the surface Hamiltonian for the
three-dimensional contacts and S is the diagonalizing matrix
of A. More detail on the formulation of the Hamiltonian and
the nonequilibrium Green’s function is provided in the Ap-
pendix.

Once a system is coupled to contacts, it experiences a
shift in energy levels, as well as level broadening,23 and
these effects can have an impact on the transport character-
istics of the device. However, this effect will be minimal if a
sufficiently long section of the nanotube is included in the
device Hamiltonian �that is, if the contact is far enough from
the tip�. Computational limitations prevent a long nanotube
to be included. Whether the length used in simulations is
adequate can be verified by comparing the results to experi-
ment or by performing the simulation with various nanotube
lengths and determining the length at which the emission
current no longer changes. Since the vacuum region is in-
cluded in the Hamiltonian, the right contact should have little
effect on the SWNT if there is sufficient distance between
the tip and the right contact. This can be easily checked by
examining the gradient of the potential in vacuum. If the
local field is higher than the applied electric field then the
vacuum level is perturbed by the molecule, but if the local
field is equal to the applied field we know that we are suffi-
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FIG. 1. �A� Schematic representation of the device, consisting of
the SWNT grown on the cathode and biased with respect to the
anode. �B� Enlarged view of the tip of the SWNT and vacuum.
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ciently far from the molecule. The simulated device is shown
in Fig. 2.

III. RESULTS AND DISCUSSION

As shown in Fig. 2, we have simulated 8-unit cells of a
�5,5� SWNT capped with half of a C60 molecule. In order to
speed up the geometrical optimization process in first-
principles calculations in GAUSSIAN 03, we first relaxed this
structure in NANOHIVE-1,24 a molecular dynamics software
package, with adaptive intermolecular reactive empirical
bond order �AIREBO� potentials.25 These potentials are
widely used in the study of carbon and hydrogen
structures.26,27 The system was relaxed again and the elec-
tronic structure was calculated under different electric fields
using the restricted HF method and the 6–31g�d� basis set in
GAUSSIAN 03. To compensate for the lack of field enhance-
ment in our short nanotube, a scaled external electric field
�value that already contains the effect of field enhancement�
was used. However, note that the actual field distribution was
calculated self-consistently in the simulation and the corre-
sponding charge accumulation is illustrated in Fig. 3 �figure
shows the Mulliken charge distribution�. The hydrogen ter-
mination creates an undesired local dipole because carbon is
more electronegative than hydrogen. As illustrated in Fig. 2
that section �about two and a half unit cells� of the device
was excluded in constructing the Hamiltonian.

For each applied electric field and after the electronic
structure calculations had converged, the SCF potential was
projected onto a real-space basis with a grid spacing of
0.7 Å in x and y directions and 0.35 Å in z direction �the
axis along the SWNT�. At each applied electric field the left
contact Fermi level was fixed at 4.5 eV below the vacuum
level. This value was taken from the work of Zheng et al.,8

which presented an accurate calculation of the potential dis-
tribution along a micrometer-long capped �5,5� SWNT using
a hybrid quantum/molecular mechanics method. The right
contact Fermi level was fixed at the right boundary’s poten-
tial level. The energy integration range was from 10 eV
above the left contact’s Fermi level to 10 eV below the right

contact Fermi level. The Fermi functions at either contacts
were evaluated at room temperature. Using the aforemen-
tioned formulation, the I-V characteristics of the structure
was calculated �Fig. 4�. The corresponding plot on FN scales
is shown in Fig. 5, obviously deviating from a straight line
and exhibiting a non-FN behavior. The current saturation be-
havior, which has been previously observed experimentally
in SWNT emitters, is quite evident.28,29

Insight can be gained into this saturation behavior by ex-
amining the transmission spectrum �Figs. 6 and 7�. At low

�
1

�
2

20Å5Å 10Å

FIG. 2. The simulated device, which encapsulates both the
SWNT and vacuum. It consists of eight unit cells of a �5,5� SWNT
capped with half a C60 molecule. The other end of the nanotube is
terminated with hydrogen to avoid dangling bonds. �1 is calculated
5 Å away from the hydrogen termination because the H-C bond
produces an undesired dipole at the end as a result of the difference
in electronegativity between carbon and hydrogen. �2 is calculated
10 Å away from the tip of the structure, where the vacuum level
has been found to be unperturbed by the molecule.

(A) Charge Distribution at Electric-Field = 0.1 V/Angstrom

(B) Charge Distribution at Electric-Field = 0.6 V/Angstrom

(C) Charge Distribution at Electric-Field = 1.2 V/Angstrom

FIG. 3. Mulliken charge distribution on the SWNT at: �A�
0.1 V Å−1, �B� 0.6 V Å−1, and �C� 1.2 V Å−1. The lightest gray
atoms illustrate zero negative charges of approximately 0.17 elec-
trons and black atoms illustrate net charge.
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FIG. 4. The I-V characteristics of the simulated device �black
squares�. The current has a pseudoexponential behavior in the
turn-on 0.1–0.4 V Å−1 region and saturation behavior in
0.6–2 V Å−1. The dashed line shows a visual FN fit for compari-
son. The deviation from FN behavior at high field is apparent.
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applied fields, as the relevant energy range in the Landauer-
Büttiker integral increases �corresponding to an increase in
the field�, more “conduction channels” enter that range. This
is reflected on the transmission spectrum �Fig. 6�, where the
shaded area shows the portion of the spectrum below the left
contact Fermi level. In this circumstance, one would not ex-
pect current saturation, similar to a conventional electron
emitter following the FN model. However, at high fields, the
area under the transmission curve in the integration range
remains relatively constant �Fig. 7�, causing current satura-
tion.

In order to better understand this saturation mechanism,
we look at the behavior of the potential profile around the tip
region of the SWNT. Figures 8 and 9 illustrate the potential
profile along the SWNT axis for various electric fields in the
pseudoexponential turn-on region of the I-V curve
�0.1–0.4 V Å−1�, and the saturation region of the I-V curve
�0.6–1.2 V Å−1�, respectively. The dotted line represents the
highest occupied molecular orbital �HOMO� of the SWNT in

each case. It can be seen that at low fields, the barrier width
decreases with increasing the field. At high fields, however,
the barrier width remains relatively constant with increasing
the field, hinting at current saturation. This can be clearly
seen on the plot of the barrier width vs field �Fig. 11�.

For comparison the barrier width �Fig. 10� outside an in-
finite, planar electron emitter under electric field is ��−1,
where � is the work function of the material and � is the
applied field. The work function of our carbon nanotube is
�5 eV �from our simulation�. In Fig. 11, the solid line
shows the behavior of the potential barrier width for the pla-
nar case and the dots are the simulated results at the tip of the
carbon nanotube. What is most interesting is how the carbon
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FIG. 5. The plot of the I-V characteristics of the simulated re-
sults �black squares� on FN scales. The dashed line shows a visual
FN fit for comparison. The deviation from FN behavior at high field
is apparent.

FIG. 6. Transmission spectrum at various low electric fields.
The spectrum is shifted as necessary so that the left contact Fermi
level is kept at 0 for all cases.

FIG. 7. Transmission spectrum at various high electric fields.
The spectrum is shifted as necessary so that the left contact Fermi
level is kept at 0 for all cases.
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FIG. 8. Potential profile along the center of the SWNT in the
turn-on regime. Dotted line is the HOMO level of the structure at:
�A� 0.2, �B� 0.25, �C� 0.3, �D� 0.35, and �E� 0.4 V Å−1.

YAGHOOBI, WALUS, AND NOJEH PHYSICAL REVIEW B 80, 115422 �2009�

115422-4



nanotube reaches a relatively constant barrier width very rap-
idly. This is due to the aspect ratio of the nanotube, which
greatly enhances the applied electric field at the tip. In other
words, in contrast with the planar case, even at relatively low
applied fields, the total field at the nanotube tip is already
quite strong �due to enhancement by the nanotube�, and
strong emission occurs. Further increasing the external field
does not change the barrier and emission current signifi-
cantly.

A more complete picture can be obtained by also consid-
ering the potential barrier height. In fact, the tunneling cur-
rent is directly dependent on both potential barrier height and
width. Therefore, investigating the product of the two may
be more illuminating in terms of seeing the overall behavior
of emission current vs applied field. Figure 12 shows this
product at the center of the carbon nanotube cap surface. It
can be seen why saturation occurs at high electric fields. The
product is large at low electric fields �both barrier height and
width are large�, but rapidly decreases with field and even-
tually, at high fields, remains relatively constant, consistent
with the saturation of current. Also, a deep potential well
exists at the tip, indicating that only a limited number of
electrons can be accommodated in this well and made avail-
able for emission at any given time. These would explain the
current saturation and the corresponding non-FN behavior

shown in Fig. 5, which resemble the results obtained in our
previous experiments32 and those performed by Kwo et al.33

So far, these deviations from the FN behavior have not
been taken into serious consideration and have usually been
overlooked by fitting a straight line to experimental results.
This study could also explain the current saturation behavior
observed in other sharp emitters like nanowires.30,31

Finally, we would like to emphasize that electronic trans-
port is a nonequilibrium problem. Therefore, the Hamil-
tonian has to be constructed under nonequilibrium condi-
tions. In the present work, although the Hamiltonian was
constructed using the SCF method and coupled to contacts to
account for the shift in energy and level broadening, the
transport NEGF part was not solved self-consistently. Also,
due to first-principles computational limitations, only a short
section of the SWNT was simulated �although the effect of
field enhancement was considered by scaling the applied
field and the actual potential distribution was calculated�.
Future work will include solving the NEGF self-consistently
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FIG. 9. Potential profile along the center of the SWNT in the
saturation regime. Dotted line is the HOMO level of the structure
at: �A� 0.6, �B� 0.75, �C� 0.9, �D� 1.05, and �E� 1.2 V Å−1.
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FIG. 10. Potential barrier width outside of an infinite planar
surface.
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nanotube.
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on a longer SWNT. We will also study the effect of various
tip structures and adsorbates on emission current.

IV. CONCLUSION

A first-principles approach was applied to calculating cur-
rent in a SWNT field emitter by encapsulating vacuum as
part of the Hamiltonian. The transmission was calculated us-
ing a real-space basis and taking into account the full 3D
nature of the problem. The results clearly demonstrate the
commonly observed current saturation behavior in electron
field-emission experiments. It was suggested that this satura-
tion mechanism arises because of two main reasons. First,
there exists a deep potential well that limits the number of
electrons that can occupy the tip, and second, and more im-
portantly, the dependence of the emission potential barrier on
applied field is significantly less in the high-field saturation
regime as compared to the pseudoexponential regime, due to
the dominant local electric field distribution.

ACKNOWLEDGMENTS

The authors acknowledge financial support from the
Natural Sciences and Engineering Research Council
�NSERC� of Canada, the Canada Foundation for Innovation
�CFI�, and the British Columbia Knowledge Development
Fund �BCKDF�. The authors also thank Mona Berciu for
insightful discussions on mesoscopic transport.

APPENDIX: REAL-SPACE FORMULATION AND
NONEQUILIBRIUM GREEN’S FUNCTION

The problem of interest is a molecule-vacuum junction
and how they can both be encapsulated in a single Hamil-
tonian. With existing first-principles software packages �i.e.,
GAUSSIAN, SIESTA, etc.�, it is easy to define a molecular
structure since they use an atomic orbital basis set. By mov-
ing the obtained Hamiltonian for this problem into the real-
space basis set �delta functions on a discretized 3D space�,
one can easily add in the vacuum part. The Hamiltonian is
defined as

H =
− �2

2m
�2 + U , �A1�

where � is the reduced Planck constant, m is the mass of an
electron, and U is potential energy. In Cartesian coordinates
the Hamiltonian can be defined as

H =
− �2

2m
� �2

�x2 +
�2

�y2 +
�2

�z2	 + U . �A2�

Using the central difference approximation of the second
derivative,

f��x� 

��

2 �f�
�2 =

f�x + �� − 2f�x� + f�x − ��
�2 , �A3�

where � is the grid spacing, one can define the Hamiltonian
matrix �similar expressions to Eq. �A3� apply to the y and z
direction�. For example, for a three dimensional space with
two discretized points in each dimension, the matrix would
look like

�
� tx ty 0 tz 0 0 0

tx � 0 ty 0 tz 0 0

ty 0 � tx 0 0 tz 0

0 ty tx � 0 0 0 tz

tz 0 0 0 � tx ty 0

0 tz 0 0 tx � 0 ty

0 0 tz 0 ty 0 � tx

0 0 0 tz 0 ty tx �

� ,

where tx= −�2

2m�x2 , ty = −�2

2m�y2 , and tz= −�2

2m�z2 ; �x2, �y2, and �z2

are the grid spacing in x, y, and z, respectively, and �=
−2�tx+ ty + tz�+U. U is calculated using a first-principles pro-
gram and projected onto this discretized 3D grid. For ex-
ample, in GAUSSIAN 03,16 U is obtained using the Cubegen
utility once the self-consistent solution is obtained.

Once the Hamiltonian is defined, the nonequilibrium
Green’s function can be calculated using

G = ��E + i0+� − H − �CNT − �Vacuum�−1, �A4�

where �CNT is the self-energy of the carbon nanotube contact
on the left side of the channel and �Vacuum is the self-energy
of the vacuum contact on the right side of the channel.

In the nonequilibrium Green’s function formulation, the
self-energy terms are defined as �=�GR��, where � is the
coupling term between the channel and the contact and GR is
the Green’s function of the contact or the reservoir. In the
real-space basis the coupling term � would only involve the
nearest neighboring points. Therefore, we can redefine the
self-energy term as �= t2GR, where t= −�2

2ma2 with a being the
grid spacing. What Appelbaum et al.22 noticed was that since
GR= ��E+ i0+�−HR�−1 and HR= �Hsurface−�� in the real-space
basis, one can write an equation under the assumption that
the contacts are at equipotential, with values equal to the
potential at the corresponding ends of the channel. This turns
out to give a simple quadratic equation of the form

− t2GR
2 + �E − Hsurface�GR − I = 0, �A5�

where I is the identity matrix. This equation can be solved
for GR, and then the self-energy terms can be calculated.
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