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Abstract: Recently, nano devices have been developed which use Carbon Nanotubes (CNTs) as 
structural elements. To define the range of applicability of CNTs in such devices, it is important to 
investigate failure modes such as the axial buckling limit. Classical continuum models are inaccurate 
as they are unable to account for the size-effects in such devices. In this work, a modified nonlocal 
continuum shell model for the axial buckling of CNTs is proposed and compared with a nonlocal 
model for torsional buckling. This is done through modifying classical continuum models by 
incorporating basic concepts from nonlocal elasticity. Furthermore, molecular dynamics (MD) 
simulations are performed on a range of nanotubes with different diameters. Compared to classical 
models, the modified nonlocal models provide a much better fit to MD simulation results. Using MD 
simulation results for axial buckling, values of the nonlocal constant and shell thickness are calculated. 
Copyright © 2009 IFSA. 
 
Keywords: Carbon nanotube, Buckling, Nonlocal elasticity, Shell, Molecular dynamics 
 
 
 
1. Introduction 
 
Carbon nanotubes (CNTs) have been the subject of ongoing research. These interesting nano-
structures exhibit superior mechanical, electrical, thermal, magnetic and optical properties, and could 
provide the means for development of novel devices at the nanoscale. Ever since their discovery, much 
work has been done on the characterization and modeling of CNT properties, ranging from 
experimental observations to numerical simulations. Among the different approaches, continuum 
modeling is of special interest in defining the mechanical properties of CNTs. Continuum models are 



Sensors & Transducers Journal, Vol. 7, Special Issue, October 2009, pp. 88-100 

 89

simple and efficient, however, in their classical form, they are unable to account for the size-effects 
that arise due to the discrete nature of matter at the nanoscale. To overcome such problems, modified 
continuum models have been proposed. One such model is based on the nonlocal elasticity theory 
proposed by Eringen [1-3], which has recently been successfully used to show size effects in nanoscale 
structures [4]. Using the same approach, in this paper, a modified nonlocal continuum shell model for 
the buckling of carbon nanotubes is proposed to account for the size effects and provide an efficient 
and accurate method for the prediction of CNT properties. The proposed shell model is validated 
through comparison with results from molecular dynamics simulations, and consistent values for the 
shell thickness and nonlocal elasticity constant of nanotubes are determined. 
 
 
2. Nonlocal Elasticity Shell Model 
 
In this section, the basic concepts of nonlocal elasticity as proposed by Eringen in the 1970’s [1, 2] are 
briefly presented. These basic equations are used to develop a nonlocal elasticity shell model to predict 
the axial buckling load of single-walled carbon nanotubes (SWCNTs). 
 
 
2.1. Nonlocal Theory of Elasticity 
 
This theory states that the stress at a reference point X in a body depends not only on the strain at point 
X, but also on the strains at all other points X′ in the body [3]. The basic equations of the nonlocal 
elasticity theory are [3]; 
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where σkl, ρ, f, ul are the stress tensor, mass density, body force density and the displacement vector at 
x respectively. σc

kl(x′) is the classical stress tensor at x′ which is related to the linear strain tensor ekl(x′) 
at point x′ through Lame constants λ and µ. The kernel function α(|x′- x|,τ) is the nonlocal modulus and 
|x′- x| is the Euclidean distance between points x′ and x, τ=e0d/l, where d is an internal characteristic 
length of the system (such as the carbon-carbon bond length), l is an external characteristic length 
(such as the CNT radius or the CNT length) and e0 represents Eringen’s nonlocal elasticity constant 
which has to be determined for each material independently. 
 
For a special class of physically admissible kernels, the above integro-partial differential equations of 
nonlocal elasticity can be reduced to singular partial differential equations. In the case of homogenous, 
isotropic elastic bodies the above equations reduce to: 
 
 2 2 2

0 0(1 ) :e d Cσ ε− ∇ = , (2)

 
where C0 is the elastic stiffness tensor of classical (local) isotropic elasticity, σ is the nonlocal stress 
tensor, ε is the strain tensor and ‘:’ denotes the inner product of tensors [5]. 
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2.2. Modified Timoshenko Shell Model for Axial Buckling 
 
In this approach a CNT is modeled as a thin cylindrical shell with thickness h and radius a.  
A cylindrical coordinate system (r, θ, x) is used with the x axis along the centre of the cylinder  
and r and θ corresponding to the radial and circumferential directions, respectively (Fig. 1). 
 
 

 
 

Fig. 1. Cylindrical shell representation of a SWCNT with the coordinate system used. 
 
 
The displacements in the axial, circumferential and radial directions of the shell denoted by u, v and w, 
respectively are functions of only x and θ. Note that these are small displacements measured from the 
compressed equilibrium state of the shell just prior to axial buckling. The non-zero strains due to axial 
buckling can be expressed in terms of displacements as [6]; 
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Based on equation (2), the nonlocal form of Hooke’s law for the stress-strain relations in a cylindrical 
coordinate system can be expressed in the following form; 
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where 
 
 2 2

2 2
02 2 2

1 , ( )R
d d e d
dx a d

ξ
θ

∇ = + =  (5)

 
ξ is the nonlocal parameter, and E and υ are the Young’s modulus and Poisson’s ratio respectively. 
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Substitution of equation (3) into equation (4) and integration over a cross-sectional element of unit 
width yields: 
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, (7)

 
where Nij (i, j= x, θ) is the force per unit length and Mij (i, j= x, θ) is the moment per unit length on a 
cross section of the shell respectively; and h is the shell thickness (Fig. 2). 
 
 

 
 

Fig. 2. Definition of forces and moments per unit length acting on a shell. 
 
 
For the case of buckling of a cylindrical shell under the action of uniform axial pressure it can be 
assumed that all resultant forces except Nx (resultant force acting on the shell cross-section in the axial 
direction) are small. The resulting equilibrium equations of forces in the system are [6]: 
 
 

2

2

2

2

0

0

0

xx x

x
xx

x
xx

dN dNa
dx d

dN dN d va aN Q
d dx dx
dQ dQ d wa aN N
dx d dx

θ

θθ θ
θ

θ
θθ

θ

θ

θ

+ =

+ + − =

+ + + =

, (8)

 
where Qi (i=x, θ) denotes the shearing forces acting in the radial direction (Fig. 2). Equilibrium 
equations for the moments acting on the shell are [6]: 
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Combining equations (8) and (9) the three equations of equilibrium for an axially compressed 
cylindrical shell are [6]: 
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 (10)

 
Applying the (1-ξ 2

R∇ ) operator on equation (10) and use of equations (6) and (7) yields the following 
modified governing differential equations for the axial buckling of a cylindrical shell; 
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where 
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212
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For the general case of the axial buckling of a cylindrical shell with length l and radius a, the buckling 
displacements are of the following form [6]; 
 
 

sin cos m xu A n
l
πθ=  

 
cos sin m xv B n

l
πθ=  (13)
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sin sin m xw C n

l
πθ= , 

 
where m is the number of half waves along the cylinder axis and n is the number of waves in the 
circumferential direction. 
 
It is important to note here that for n=0 symmetrical buckling occurs which coincides with radial 
expansion and compression of the tube. For n=1 the cross-section of the tube remains circular and the 
tube buckles as a strut [42]. None of these modes are of interest to the current work and from here on, 
only the shell-type axial buckling mode-shapes with n>1 are considered. Substitution of equations (13) 
into the modified governing differential equations (11) and solution of the resulting eigenvalue 
problem yields the following relation for the modified critical axial buckling load of a cylindrical shell: 
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where λ=mπa/l. The non-dimensional form of the critical buckling load is 
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For comparison the classical Timoshenko relations for the critical axial buckling load and its non-
dimensional form are [6]: 
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Therefore, 
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Comparison of equations (15) and (16) clearly shows that the former is size-dependant. This size-
dependency is further explained in the next section. Equations (14) and (15) are based on the critical 
axial buckling wavelength calculated as [6]: 
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−
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−
 (18)

 
It is interesting to compare the nonlocal buckling loads for axial buckling derived here with the 
nonlocal buckling torque for the case of torsional buckling derived previously by the authors [7]. For a 
single-walled carbon nanotube the nonlocal Timoshenko model for the buckling torque is [7] 
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and the non-dimensional form of the buckling torque corresponding to the classical thin shell model 
based on ideal elasticity is [6] 
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Therefore, 
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It is important to note that for the case of torsional buckling λ2 is small compared to n2 and is 
sometimes omitted from equations (19) to (21). The results of equations (19) to (21) are based on the 
following critical buckling wavelength (λcr) given by Timoshenko and Gere [6]: 
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2.3. Size-dependency of Nonlocal Models 
 
Looking back at the classical relations for buckling loads shown in equations (16) and (20) it is easily 
seen that the non-dimensional form of these buckling loads is independent of size. In other words, 
regardless of the geometric dimensions and aspect ratios of a cylindrical shell, classical models always 
predict the same value for the non-dimensional buckling load. In contrast, looking at the nonlocal 
forms of buckling loads derived in equations (15) and (19) it is easily seen that the non-dimensional 
form of these buckling loads is size-dependent. This is due to the presence of geometric ratios in the 
denominators of the aforementioned equations. As an example the denominator of equation (15) is 
analyzed here: 
 
 2 22

2 2 2 2 2 2 2
0 021 ( ) 1d d de n e n m

a la
λ π

⎛ ⎞⎛ ⎞ ⎛ ⎞+ + = + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 (23)

 
The magnitude of the expression of equation (23) depends on the value of two geometric ratios,  
d/a and d/l, where d is the inter-atomic distance or the C-C bond length and a and l are the radius and 
length of the CNT, respectively. Since d is constant or almost constant for all CNTs  
(d ≈ 1.41 angstroms), based on their respective length and diameter, different CNTs will have different 
d/a and d/l ratios and thus different non-dimensional buckling loads. As the lengths and diameters of 
CNTs become smaller and comparable to the inter-atomic distance d, the d/a and d/l ratios become 
larger and have a greater impact on the magnitude of equation (23). This is how nonlocal models are 
able to account for size-effects. The magnitude of the expression of equation (23) also depends on: 
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- The buckling mode-shape through the values of m (longitudinal half-wave number)  
and n (circumferential wave-number). As wave-numbers increase, the corresponding wavelengths 
decrease and become comparable to the inter-atomic distance d. 
- The value of the nonlocal elasticity constant e0, which has to be determined for each material 
independently. 
 
Fig. 3, which is based on equations (17) and (21) gives a comparison of classical and nonlocal 
buckling loads for different values of the nonlocal constant e0. It is seen that the value of the nonlocal 
constant can significantly affect the buckling loads predicted by the nonlocal models. The difference 
between classical and nonlocal models is significant for CNTs with small diameters, but this difference 
becomes negligible at larger diameters where the nonlocal and classical models converge. 
 
Based on the above observations it is important to know the buckling mode-shape (values of m and n) 
and the correct value of the nonlocal elasticity constant e0 in order to assess the size-effects on 
buckling loads. This task is undertaken in the next section where MD simulations are used in 
conjunction with classical and nonlocal models to calculate the values of the aforementioned 
parameters. 
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Fig. 3. Comparison of classical and nonlocal buckling loads (equations 17 & 21) for different values 
of the nonlocal constant e0 (λ=0.5 and n=2 have been used). 

 
 
3. Determination of the Nonlocal Constant 
 
It is interesting to compare the nonlocal models derived here with classical models to see if a 
substantial improvement is achieved in the prediction of CNT buckling loads. Ideally, it is best to 
compare the axial buckling models with experimental results; however, currently no such experimental 
results have been reported for SWCNTs. Thus, molecular dynamics is used to simulate the axial 
buckling of SWCNTs and extract the corresponding buckling loads. Optimized values of shell 
thickness and nonlocal constant for the axial buckling of CNTs are found and compared with the 
values previously obtained for torsional buckling of CNTs [7]. 
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3.1. MD Simulation of CNT Axial Buckling 
 
Quasi-static molecular dynamics is used to simulate the shell-type axial buckling (n >1) of several 
armchair nanotubes. The axial strain is simulated by changing the coordinates of carbon atoms to a 
compressively strained state (Fig. 4). These new coordinates are then input into the molecular 
dynamics simulator and the positions of the atoms at both ends of the CNT are fixed to simulate pined-
pined boundary conditions. The CNT is then allowed to relax to an equilibrium configuration under the 
predefined axial strain. The number of relaxation steps required to reach equilibrium depends on the 
number of atoms in the system and the applied strain. For each carbon nanotube the above simulation 
is performed for different compressive axial strains, and it is seen that above a certain value of strain, 
which is identified as the critical strain for axial buckling, the nanotube collapses into a buckled mode-
shape when allowed to relax for a sufficient amount of time (Fig. 5). 
 
 

 
 

 
Fig. 4. A compressive axial strain of 0.04 is induced in a (10, 10) armchair CNT by changing the coordinates  

of carbon atoms (atoms at both ends of CNT shown in dark color are fixed). 
 
 

 
 

Fig. 5. Different instances of relaxation of a (10, 10) armchair nanotube under an axial compressive strain  
of 0.04. (a) simulation start; (b) after relaxation for 19250 time-steps; (c) after relaxation  

for 20250 time-steps; (d) after relaxation for 30000 time-steps. 
 
 

Axial compressive strain is induced 

10 nm 
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First, the axial buckling mode-shape calculated with molecular dynamics is compared with the 
buckling mode-shape of equations (10) and (15) to see if it is correct. As an example, based on 
equation (15), a (10, 10) armchair nanotube with radius a=6.7 angstroms and length l=163.7 angstroms 
should have a buckling mode-shape with circumferential wave number n=2 and a longitudinal wave 
number of m/2=2.6. The buckled mode shape of a (10, 10) armchair nanotube at critical strain (0.035) 
simulated using molecular dynamics is shown in Fig. 6. It is evident that there are two circumferential 
wavelengths in the transverse direction so that n=2. The number of longitudinal waves can also be 
counted with a visual inspection of Fig. 6 and is close to m/2=2.6 as predicted by the analytical 
solution. 
 
The progression of the potential energy U of the system with strain ε (Fig. 7) is used to find the 
compressional stiffness and values of surface Young’s modulus. These parameters are needed for use 
in equations (12) and (13). The surface Young’s modulus is found through the following relation: 
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1
2

d UEh
al dπ ε

=  (24)

 
 

 
 

Fig. 6. Axial buckling mode-shape of (10, 10) armchair nanotube at critical strain. 
 
 

 
 

Fig. 7. Progression of potential energy with axial buckling strain of a (10, 10) armchair nanotube. 
 

Buckling  
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The critical axial buckling strains and the corresponding critical loads along with the surface Young’s 
moduli of several armchair nanotubes obtained from MD simulations are presented in Table 1. 
 
 

Table 1. Properties and critical forces and strains of several armchair CNTs. 
 

Chiral Indices Diam.(Ǻ) Length L (Ǻ) L / Diam E.h (GPa nm) Fcr (N.m) ε cr λ cr 
(6,6) 8.0 98.21 12.28 323.31 5.68E-08 0.047 0.84 
(8,8) 10.7 131.00 12.24 307.93 5.41E-08 0.039 0.72 

(10,10) 13.4 163.66 12.21 301.90 5.31E-08 0.035 0.65 
(12,12) 16.1 165.00 10.25 299.56 5.26E-08 0.029 0.59 
(14,14) 18.8 142.86 7.58 298.03 5.24E-08 0.027 0.54 
(16,16) 21.5 160.00 7.44 296.10 5.20E-08 0.024 0.51 
(20,20) 26.9 203.84 7.57 295.84 5.20E-08 0.020 0.46 

 
 
3.4. Values of the Nonlocal Constant and Shell Thickness 
 
A least-squares optimization is performed to calculate the values of parameters to be used in the 
nonlocal and classical models. The shell thickness h is the optimization variable for the classical case 
and both shell thickness h and nonlocal constant e0 are optimization variables for the nonlocal model. 
The values obtained for these parameters are shown in Table 2. 
 
 

Table 2. Values of shell thickness (h) and nonlocal constant (e0). 
 

 h(Ǻ) e0 Residual Norm (nN2) 
Classical Timoshenko 0.66  196.27 

Nonlocal Timoshenko 0.81 0.94 6.66 
 
 
Looking at the nonlocal model, the optimized values for shell thickness derived from the axial 
buckling simulations are consistent with the thickness of 0.85 angstroms derived for torsional buckling 
in the previous work [7] while this is not true for the classical model. The value of the nonlocal 
elasticity constant derived here is marginally larger than the 0.85 value derived for torsional buckling 
[7] and the 0.82 value derived by studying the beam type axial buckling of CNTs [8]; however it is 
within the same range (<15 %). This difference could be attributed to the different deformation fields 
of the axial and torsional buckling problems, as well as to errors that exist in the numerical 
simulations. 
 
The results from MD simulations, classical and nonlocal models are compared in Fig. 8. It is seen that 
for smaller CNTs, the classical model is unable to show the correct trend in critical axial buckling load 
with change in diameter (Fig. 8(a)) while the nonlocal shell model shows much better agreement with 
the molecular dynamics simulation results (Fig. 8 (b)). 
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    (a)                                                                                 (b) 
 

Fig. 8. Comparison of axial buckling loads from (a) classical and (b) nonlocal shell model with MD results  
for several armchair CNTs based on properties given in Table 2. 

 
 
The best match between MD simulations and nonlocal formulations is achieved for a nonlocal constant 
value of e0=0.94. Interestingly, for CNTs with small radii (less than 1.5 nm) the classical model 
predicts axial buckling loads that decrease with the increase in CNT radius (Fig. 8 (a)), while the 
nonlocal model predicts axial buckling loads that increase with the increase in CNT radius (Fig. 8 (b)), 
which is the behavior shown by the molecular dynamics simulation results. As seen from Fig. 8 (b), for 
CNTs with larger radii (larger than 1.4 nm), if used with a shell thickness of h=0.8 Å, the classical 
model can predict the MD axial buckling loads with good accuracy (the error is less than 5 %). 
 
 
4. Conclusions 
 
It is found that compared to classical elastic shell models, the modified nonlocal elastic shell model 
provides a much better fit to MD simulation results (Fig. 8) of axial buckling of SWCNTs. For CNTs 
with small radii, classical models are unable to show the correct trend in buckling load with the change 
in CNT radius. This is due to ignoring the size effects. Based on the current study, a global thickness 
of 0.081 nm for CNTs subject to axial compression is proposed. Value of the nonlocal constant is 
calculated as 0.94 for axial buckling. Through comparison of classical and nonlocal elasticity models it 
is concluded that classical approaches overestimate the critical axial buckling loads of CNTs and the 
error is more significant for CNTs with smaller diameters. For CNTs with large diameters (several 
nanometers or more), size effects are insignificant and both the classical and nonlocal models predict 
the same values for the axial buckling load. 
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